Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王安邦(An-Bang Wang)
dc.contributor.authorYu-Wen Hsiehen
dc.contributor.author謝育文zh_TW
dc.date.accessioned2021-06-15T11:16:25Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49115-
dc.description.abstract隨著消費性電子產品的需求逐年提升,各式各樣的塗佈技術已被大量應用於高科技產業,其中不需母模的圖案化塗佈技術因其環保節能的特性,已漸漸成為發展主流。太極塗佈法即是一新興的不需母模圖案化塗佈技術,透過將間斷式的液氣微雙相流連續地塗佈於基材上而產生非連續的塗佈圖案,具有作動簡單、塗料黏度適用範圍廣及可兼容捲對捲(roll-to-roll)方式生產等優越特性。本研究為將此新興技術推廣至工業化量產的前導型研究,根據所需開發的關鍵技術將論文架構分為三大部分:
I. 液氣微雙相流即時尺寸控制系統之開發:
此部分首先探討流體輸入源對液氣微雙相流尺寸均勻性的影響,發現一般慣用的針筒式幫浦將對微雙相流尺寸產生約±20%的尺寸變異,而定壓力輸入源則能產生尺寸變異係數小於0.73%的均勻微氣泡與微液滴。接著透過等效單相流模型分析,成功預測出太極塗佈法必要之段塞流模態的操作區間,並找出影響此操作區間大小的關鍵因子:微流管道幾何流阻比G*。最後則開發出一可即時控制液氣微雙相流尺寸變化的閉迴路系統,於微液滴和微氣泡尺寸的即時控制變化範圍可達一個數量級,而整體尺寸操控之誤差小於±3%。
II. 液氣微雙相流即時偵測系統之開發:
本研究共開發出電阻感測器與微光纖感測器兩種液氣微雙相流即時偵測系統。電阻式感測系統透過液體與氣體導電程度的差異來辨別彼此,於液氣微雙相流流速和尺寸的量測誤差分別在±1%和±6%範圍內,但工作流體限定為導體。微光纖偵測系統則透過工作流體的折射率變化之感測獲得氣液介面資訊,僅需極微量(100 nL)的檢體便可同時進行微雙相流折射率、流速與尺寸的即時量測,對折射率、流速和尺寸的量測解析度分別為2 × 10-4、50 μm/s和5 μm,足以應用於太極塗佈法之精密定位。
III. 多管道液氣微雙相流同步產生與塗佈機制開發:
本文共研究開發出三種被動式共流體源同步產生液氣微雙相流的結構。第一種混合T型與梯狀微流道設計,利用流體耦合性於雙管道中反相產生液氣微雙相流,且隨著兩管道中的微氣泡越往下游移動,兩者間的相位差會逐漸縮小至接近同步,但難以拓展至三管道以上的應用。第二種為雙擴展角毛細閥門設計,可於雙管道中產生相位相同的液氣微雙相流,但卻有作動頻率較慢的問題。第三種則為三平行聚焦型微流道結合下游梯狀流道的設計,可於三管道中以高頻率產生同相的液氣微雙相流,且易於平行擴展至多流道。而於多管道液氣微雙相流同步塗佈部分,本研究以哈根-泊肅葉定律為基礎,開發出簡易控制多管道分流均勻性的技術,可使各管道間分流誤差小於±1%。此外,本研究也已成功測試出三平行管道可同步塗佈的操作區間,各管間的相位差控制在±4.6º以內。於十管的同步塗佈測試中,則能成功產生相位差小於±7.5º的液氣微雙相流。
zh_TW
dc.description.abstractWith the growing demand for the rapid changes of consumer electronics, a variety of coating methods have been applied in high-tech industries. Among these coating techniques, pattern coating technology has gradually become the mainstream due to its eco-friendly features. Air-Bubble Coating is a novel mask-less pattern coating method, and it generates discontinuous patterns by continuously coating the segmented gas-liquid micro-two-phase flow onto the substrate. It has superior characteristics such as simple operation, wide viscosity applicable range, and good compatibility to roll-to-roll process. This research aims to grow Air-Bubble Coating into an industrial mass production technique. According to the required key technologies, the structure of this dissertation work is divided into three major parts:
I. The development of real-time size control system for gas-liquid micro-two-phase flow:
First of all, the effect of fluid driven sources on the size uniformity of gas-liquid micro-two-phase flow has been investigated. The commonly used syringe pump would produce about ±20% bubble/droplet size variation while the constant pressure source could generate uniform size of bubbles/droplets with the coefficient of variation less than 0.73%. Second, the operational range of slug flow, which is essential for Air-Bubble Coating, can be well-predicted based on the equivalent single-phase flow model, and the channel geometric factor G* has been identified as the key parameter that affects the scope of slug flow region. Finally, a closed-loop system for controlling the size of gas-liquid micro-two-phase flow in real-time has been developed. The bubble/droplet size variable range of this system reaches one order of magnitude, and the overall size control error is less than ±3%.
II. The development of on-line detection system for gas-liquid micro-two-phase flow:
An electrical resistance sensing system and an optical microfiber sensing system have been developed to on-line detect the gas-liquid micro-two-phase flow. For electrical resistance detection system, the conductivity difference of liquid and gas was applied to identify the gas-liquid interface, and the velocity and size measurement errors were within ±1% and ±6%, respectively. However, in order to operate properly, the continuous phase fluid must be conductive. In contrast, the microfiber detection system obtains the information of gas-liquid interface based on the refractive index change of the working fluid. With only tiny sample volume (100 nL), the on-line detection of refractive index, velocity, and size can be performed simultaneously. The measurement resolution for refractive index, velocity, and size are 2 × 10-4, 50 μm/s and 5 μm, respectively. This optical sensing system is robust enough for the precision positioning of Air-Bubble Coating.
III. The development of synchronization for the generation and coating of multi-channel gas-liquid micro-two-phase flow:
Three microfluidic structures for passively maintaining the synchronicity of gas-liquid micro-two-phase flow generation with common fluid sources have been developed. The first microfluidic structure combines the design of T-junction and ladder channels, and it utilizes fluid coupling to generate out-of-phase gas-liquid micro-two-phase flow in two parallel channels. The phase lag between these two channels gradually approaches zero as the bubbles/droplets flow downstream. However, it is difficult to apply this design to more than two parallel channels. The second microfluidic structure is two capillary valves with dual diffusor. It can produce in-phase gas-liquid micro-two-phase flow in two parallel channels, but the working frequency is much lower than the first design. The third one is a three parallel flow-focusing device with downstream ladder channels. It can generate in-phase gas-liquid micro-two-phase flow between all channels with high frequency, and it is suitable to scale up to multi-channel applications. For the multi-channel coating of gas-liquid micro-two-phase flow, a simple technique has been developed to control the uniformity of flow distribution within parallel channels based on Hagen-Poiseuille's law, and the diversion error is less than ±1%. Furthermore, the operational range for three channel synchronization coating has been investigated. The phase difference between each channel can be controlled within ±4.6º. As for ten parallel channels coating, the phase difference of gas-liquid micro-two-phase flow among all channels was less than ±7.5º.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:16:25Z (GMT). No. of bitstreams: 1
ntu-105-F97543034-1.pdf: 21847053 bytes, checksum: ae5b20f9d79b13c29da5fbb928fd83a1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 i
口試委員審定書 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xxvi
符號表 xxvii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 5
第二章 文獻回顧 6
2.1 塗佈技術簡介 6
2.1.1 面式塗佈 13
2.1.2 圖案化塗佈 22
2.2 微雙相流技術簡介 31
2.2.1 微雙相流產生方法 39
2.2.2 微雙相流檢測技術 57
2.2.3 微雙相流平行產生技術 65
第三章 實驗設備與研究方法 75
3.1 實驗設備 75
3.1.1 微流體晶片加工設備 75
3.1.2 工作流體調配裝置 77
3.1.3 流體傳輸裝置 79
3.1.4 顯影裝置 82
3.1.5 訊號產生與擷取裝置 86
3.1.6 雷射光源系統 88
3.1.7 塗佈系統 91
3.2 研究方法 96
3.2.1 微流體晶片製作 96
3.2.2 微光纖製作 108
3.2.3 微雙相流產生與塗佈實驗操作 109
3.2.4 影像分析程式 116
第四章 結果與討論 126
4.1 液氣微雙相流產生與尺寸控制系統開發 126
4.1.1 流體源對液氣微雙相流產生穩定性之影響探討 126
4.1.2 壓力驅動液氣微雙相流產生預測模型 141
4.1.3 微液滴與微氣泡即時尺寸操控系統 148
4.2 液氣微雙相流偵測系統開發 159
4.2.1 電極偵測系統 159
4.2.2 微光纖偵測系統 169
4.3 高通量液氣微雙相流產生與塗佈之同步機制開發 184
4.3.1 T型與梯狀混合式雙管道微雙相流同步機制開發 185
4.3.2 毛細閥門式雙管道微雙相流同步機制開發 188
4.3.3 獨立流體源於三管道微雙相流產生之同步性測試 201
4.3.4 微雙相流三管道分流模型分析 208
4.3.5 共流體源於三管道微雙相流產生之同步機制開發 212
4.3.6 三管道太極塗佈法之同步性測試 222
4.3.7 微雙相流十管道分流模型分析 232
4.3.8 十管道太極塗佈法之同步性測試 235
第五章 結論與未來展望 238
5.1 結論 238
5.2 未來展望 241
附錄 243
附錄一 精密四軸塗佈系統接線配置 243
附錄二 微銑刀與微鑽針對壓克力之加工參數 246
附錄三 MATLAB微雙相流尺寸分析程式碼 247
附錄四 MATLAB微雙相流產生時機分析程式碼 254
附錄五 LabVIEW微雙相流尺寸即時分析程式碼 258
附錄六 微光纖偵測系統於nc ≥ nf條件之量測結果 269
附錄七 重力驅動式微光纖偵測系統 271
附錄八 毛細-重力閥門理論分析 272
參考文獻 274
作者簡介 294
dc.language.isozh-TW
dc.subject同步機制zh_TW
dc.subject即時尺寸控制zh_TW
dc.subject液氣微雙相流zh_TW
dc.subject太極塗佈法zh_TW
dc.subject即時檢測zh_TW
dc.subjectAir-Bubble Coatingen
dc.subjectsynchronization mechanismen
dc.subjecton-line detectionen
dc.subjectreal-time size controlen
dc.subjectgas-liquid micro-two-phase flowen
dc.title多管微流道同步機制與高通量「太極塗佈」系統之開發研究zh_TW
dc.titleDevelopment of synchronization for multi-microchannel and high-throughput “Air-Bubble Coating” systemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),陳朝光(Chao-Kuang Chen),程章林(Jang-Lin Chen),楊安石(An-Shik Yang),劉大佼(Ta-Jo Liu)
dc.subject.keyword太極塗佈法,液氣微雙相流,即時尺寸控制,即時檢測,同步機制,zh_TW
dc.subject.keywordAir-Bubble Coating,gas-liquid micro-two-phase flow,real-time size control,on-line detection,synchronization mechanism,en
dc.relation.page301
dc.identifier.doi10.6342/NTU201603414
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
21.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved