請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49110完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
| dc.contributor.author | Ting-Wei Chang | en |
| dc.contributor.author | 張庭瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:16:16Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | [1] H. K. Onnes, Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures, in KNAW Proceedings (Amsterdam, 1911), 13, pp. 1274. [2] W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwissenschaften 21, 787 (1933). [3] F. London, H. London, and F. A. Lindemann, The electromagnetic equations of the supraconductor, in Proceedings of the Royal Society Series A - Mathematical and Physical Sciences (The Royal Society, Oxford, 1935), 149, pp. 71. [4] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Physical Review 108, 1175 (1957). [5] W. L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Physical Review 167, 331 (1968). [6] C. M. Perlov and C. Y. Fong, Calculation of the superconducting transition temperature in niobium, Physical Review B 29, 1243 (1984). [7] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letters 58, 908 (1987). [8] Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, The Journal of Chemical Physics 140, 174712 (2014). [9] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525, 73 (2015). [10] F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity, Physical Review Letters 119, 107001 (2017). [11] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures, Physical Review Letters 122, 027001 (2019). [12] Z. Li, G. Antonius, M. Wu, F. H. da Jornada, and S. G. Louie, Electron-Phonon Coupling from Ab Initio Linear-Response Theory within the GW Method: Correlation-Enhanced Interactions and Superconductivity in Ba1-xKxBiO3, Physical Review Letters 122, 186402 (2019). [13] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K, Journal of the American Chemical Society 130, 3296 (2008). [14] T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu et al., Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe, Physical Review B 79, 014522 (2009). [15] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Physical Review B 78, 134514 (2008). [16] K. A. Brueckner, Theory of Nuclear Structure (John Wiley and Sons, New York, 1959), p. 47. [17] S. Weinberg, The Search for Unity: Notes for a History of Quantum Field Theory, Daedalus 106, 17 (1977). [18] A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2010), 2nd ed., p. 40. [19] V. Fock, Konfigurationsraum und zweite Quantelung, Zeitschrift für Physik 75, 622 (1932). [20] T. Lancaster and S. J. Blundell, Quantum Field Theory for the Gifted Amateur (Oxford University Press, 2014), pp. 402. [21] M. Tinkham, Introduction to Superconductivity (Dover Publications, 2004), 2nd ed., pp. 62. [22] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik 389, 457 (1927). [23] L. H. Thomas, The calculation of atomic fields, in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, 1927), 23, pp. 542. [24] E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell’atome, Rend. Accad. Naz. Lincei 6, 602 (1927). [25] P. A. M. Dirac, Note on Exchange Phenomena in the Thomas Atom, in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, 1930), 26, pp. 376. [26] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136, B864 (1964). [27] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004), pp. 121. [28] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140, A1133 (1965). [29] D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters 45, 566 (1980). [30] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45, 13244 (1992). [31] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865 (1996). [32] S. Baroni, P. Giannozzi, and A. Testa, Green's-function approach to linear response in solids, Physical Review Letters 58, 1861 (1987). [33] A. Sommerfeld, Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik, Zeitschrift für Physik 47, 1 (1928). [34] G. Grosso and G. P. Parravicini, Solid State Physics (Academic Press, 2013), 2nd ed., p. 128. [35] P. Debye, Zur Theorie der spezifischen Wärmen, Annalen der Physik 344, 789 (1912). [36] A. F. Goncharov, S. S. Lobanov, V. B. Prakapenka, and E. Greenberg, Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur, Physical Review B 95, 140101 (2017). [37] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Scientific Reports 4, 6968 (2014). [38] R. Bianco, I. Errea, M. Calandra, and F. Mauri, High-pressure phase diagram of hydrogen and deuterium sulfides from first principles: Structural and vibrational properties including quantum and anharmonic effects, Physical Review B 97, 214101 (2018). [39] R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Physical Review B 91, 224513 (2015). [40] I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor, Physical Review Letters 114, 157004 (2015). [41] M. Sakashita, H. Yamawaki, H. Fujihisa, K. Aoki, S. Sasaki, and H. Shimizu, Pressure-Induced Molecular Dissociation and Metallization in Hydrogen-Bonded H2S Solid, Physical Review Letters 79, 1082 (1997). [42] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni et al., Advanced capabilities for materials modelling with QUANTUM ESPRESSO, Journal of Physics: Condensed Matter 29, 465901 (2017). [43] D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Physical Review B 88, 085117 (2013). [44] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13, 5188 (1976). [45] P. S. Wang, S. S. Sun, Y. Cui, W. H. Song, T. R. Li, R. Yu, H. Lei, and W. Yu, Pressure Induced Stripe-Order Antiferromagnetism and First-Order Phase Transition in FeSe, Physical Review Letters 117, 237001 (2016). [46] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry 27, 1787 (2006). [47] S. Margadonna, Y. Takabayashi, M. T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E. Suard, and K. Prassides, Crystal structure of the new FeSe1−x superconductor, Chemical Communications, 5607 (2008). [48] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37 K), Physical Review B 80, 064506 (2009). [49] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics 132, 154104 (2010). [50] S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, Journal of Computational Chemistry 32, 1456 (2011). [51] R. Yoshida, T. Wakita, H. Okazaki, Y. Mizuguchi, S. Tsuda, Y. Takano, H. Takeya, K. Hirata, T. Muro, M. Okawa et al., Electronic Structure of Superconducting FeSe Studied by High-Resolution Photoemission Spectroscopy, Journal of the Physical Society of Japan 78, 034708 (2009). [52] K. Zakeri, T. Engelhardt, T. Wolf, and M. Le Tacon, Phonon dispersion relation of single-crystalline β-FeSe, Physical Review B 96, 094531 (2017). [53] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, What drives nematic order in iron-based superconductors?, Nature Physics 10, 97 (2014). [54] J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes, and R. Valentí, Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides, Nature Physics 11, 953 (2015). [55] F. Wang, S. A. Kivelson, and D.-H. Lee, Nematicity and quantum paramagnetism in FeSe, Nature Physics 11, 959 (2015). [56] Q. Wang, Y. Shen, B. Pan, Y. Hao, M. Ma, F. Zhou, P. Steffens, K. Schmalzl, T. R. Forrest, M. Abdel-Hafiez et al., Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe, Nature Materials 15, 159 (2016). [57] A. V. Muratov, A. V. Sadakov, S. Y. Gavrilkin, A. R. Prishchepa, G. S. Epifanova, D. A. Chareev, and V. M. Pudalov, Specific heat of FeSe: Two gaps with different anisotropy in superconducting state, Physica B: Condensed Matter 536, 785 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49110 | - |
| dc.description.abstract | 自從實驗物理學家發現釔鋇銅氧化物的高溫超導性質之後,原本的Bardeen-Cooper-Schrieffer (BCS)理論無法完整解釋其現象,而理論物理學家也不斷提出相關的高溫超導理論來解釋這個新現象。近年來,有理論物理學家透過BCS理論結合第一原理計算,發現在某些高氫化材料中也存在高溫超導,相關實驗也驗證了此一現象。因此,物理學家又重新檢視BCS理論是否可以解釋某些超導物質的超導現象。此論文透過第一原理密度泛函理論計算與BCS理論結合,研究硫氫化物(H3S)與硒化鐵(FeSe)的電子與聲子結構,並探討其超導特性。對於H3S,實驗的數據顯示它的超導溫度在約150 GPa達到最高,並且隨著壓力升高有逐漸下降的趨勢。然而,在我們的理論研究中並沒有發現此結果。另外,藉由參考一些文獻,我們發現在計算中加入非諧效應可以使計算結果與實驗更加相符。對於FeSe,因為其為層狀結構,我們在計算中加入凡得瓦爾效應,但是所計算出的超導溫度仍遠小於實驗的量測(8.5 K)。對於此一結果,藉由參考相關文獻,我們認為在FeSe的計算中引入瓦尼爾(Wannier)函數將可能提升計算之超導溫度並解釋其超導現象。而透過計算FeSe的電子比熱與實驗的比熱做比較,並經由公式估算出電聲子耦合強度,我們成功估算出與實驗接近的超導溫度(8.4 K)。 | zh_TW |
| dc.description.abstract | Ever since the discovery of superconductivity in Yttrium Barium Copper Oxide (YBa2Cu3O7), it became clear that Bardeen-Cooper-Schrieffer (BCS) theory was insuf-ficient in explaining its superconductivity, leading many theoretical physicists to pro-pose their own high-temperature superconductivity theories. In recent years, calcula-tions involving a combination of BCS theory and first-principle calculations led to the discovery of superconductivity in some superhydride materials, which was later veri-fied by experiments. This led to many physicists reconsidering whether BCS theory could explain superconductivity in some superconducting materials or not. In this thesis, we compute the electron and phonon properties of H3S and FeSe using a combination of the first principle density functional theory and BCS theory and dis-cuss their superconducting properties. Experimental H3S analysis shows that its su-perconducting temperature peaks at around 150 GPa and decreases as pressure in-creases further; however, our theoretical calculations do not find this phenomenon. Through investigating references, we discover that incorporating the anharmonic effect into calculations causes results to match up more with the experiments. In our FeSe computations, we include the Van der Waals effect due to the material’s layered struc-ture, but the resulting superconducting temperatures remain much lower than the ex-perimental value (8.5 K). Regarding this result, we concluded from references that the inclusion of the Wannier functions (GW method) may increase the calculated Tc as well as explain its superconductivity. Through computing the specific heat and com-paring it with the experiment, we evaluate the electron-phonon coupling strength of FeSe by empirical formulae and successfully evaluate a superconducting temperature 8.4 K that closely matches the experiment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:16:16Z (GMT). No. of bitstreams: 1 U0001-1208202020551200.pdf: 3446413 bytes, checksum: d30fe3dcdf42b9817428ce887a436323 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Theoretical Background 4 2.1 BCS Theory 4 2.1.1 Field Theory for Condensed Matter 4 2.1.2 The BCS Hamiltonian and the Ground State Energy 7 2.2 Density Functional Theory 12 2.2.1 Thomas–Fermi–Dirac Approximation – the First DFT 12 2.2.2 Hohenberg–Kohn Theorems 14 2.2.3 Kohn-Sham Scheme 15 2.2.4 Exchange-Correlation Energy 18 2.3 Density Functional Perturbation Theory 21 2.3.1 Lattice Dynamics 21 2.3.2 Perturbation Technics 23 2.3.3 Density Functional Perturbation Theory 25 2.4 Thermal Properties – Heat Capacity 27 2.4.1 Specific Heat Capacity – Electron Contribution 27 2.4.2 Specific Heat Capacity – Phonon Contribution 29 3 Superconductivity and Thermal Properties of Sulfur Hydride 32 3.1 Introduction 32 3.2 Crystal Structure 34 3.3 Computational Details 35 3.4 Superconducting Properties of H3S 36 3.5 Specific Heat Capacity of H3S 46 4 Structural, Superconducting and Thermal Properties of Iron Selenide 50 4.1 Introduction 50 4.2 Structural Properties 52 4.3 Computational Details 54 4.4 Superconducting Properties of FeSe 55 4.5 Specific Heat Capacity of FeSe 63 5 Summary 67 Bibliography 69 | |
| dc.language.iso | en | |
| dc.subject | 第一原理 | zh_TW |
| dc.subject | 硒化鐵 | zh_TW |
| dc.subject | 硫氫化物 | zh_TW |
| dc.subject | 超導 | zh_TW |
| dc.subject | Iron Selenide | en |
| dc.subject | Superconductivity | en |
| dc.subject | First Principles | en |
| dc.subject | Sulfur Hydride | en |
| dc.title | 硫氫化物與硒化鐵中晶體振動與超導性質之第一原理理論研究 | zh_TW |
| dc.title | Ab-initio Study of Lattice Dynamics and Superconducting Properties of Sulfur Hydride and Iron Selenide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡崇德(Chong-Der Hu),蔡政達(Jeng-Da Chai),黃斯衍(Ssu-Yen Huang) | |
| dc.subject.keyword | 第一原理,超導,硫氫化物,硒化鐵, | zh_TW |
| dc.subject.keyword | First Principles,Superconductivity,Sulfur Hydride,Iron Selenide, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202003155 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202020551200.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
