Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶璨
dc.contributor.authorChih-Jung Changen
dc.contributor.author張芝榕zh_TW
dc.date.accessioned2021-06-15T11:16:01Z-
dc.date.available2018-10-05
dc.date.copyright2016-10-05
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation1. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical
industry. Applied microbiology and biotechnology 65(4):363-372.
2. Riggs AD (1981) Bacterial production of human insulin. Diabetes care
4(1):64-68.
3. Andersen DC, Krummen L (2002) Recombinant protein expression for
therapeutic applications. Current Opinion in Biotechnology 13(2):117-123.
4. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in
Escherichia coli. Nature biotechnology 22(11):1399-1408.
5. Bessette PH, Qiu J, Bardwell JC, et al. (2001) Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. Journal of bacteriology 183(3):980-988.
6. Terpe K (2006) Overview of bacterial expression systems for heterologous
protein production: from molecular and biochemical fundamentals to
commercial systems. Applied microbiology and biotechnology 72(2):211-222.
7. Westers L, Wester H, Quax WJ (2004) Bacillus subtilis as cell factory for
pharmaceutical proteins: a biotechnological approach to optimize the host
organism. Biochimica et biophysica acta 1694:299-310.
8. Caron AW, Archambault J, Massie B (1990) High-level recombinant
protein-production in bioreactors using the baculovirus insect cell expression
system. Biotechnology and bioengineering 36(11):1133-1140.
9. Marchal I, Jarvis DL, Cacan R, et al. (2001) Glycoproteins from insect cells: sialylated or not? Biological chemistry 382(2):151-159.
10. Patterson RM, Selkirk JK, Merrick BA (1995) Baculovirus and insect-cell
gene-expression - review of baculovirus biotechnology. Environmental health
perspectives 103(7-8):756-759.
11. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nature biotechnology 22(11):1393-1398. 19.
12. Jayapal KP, Wlaschin KF, Hu WS , et al. (2007) Recombinant protein therapeutics from CHO cells - 20 years and counting. Society for biological engineering 103(10):40-47.
13. Verma R, Boleti E, George AJ (1998) Antibody engineering: comparison of
bacterial, yeast, insect and mammalian expression systems. Journal of
immunological methods 216(1-2):165-181.
14. Bitter GA, Chen KK, Banks AR, et al. (1984) Secretion of foreign proteins
from Saccharomyces cerevisiae directed by alpha-factor gene fusions.
Proceedings of the national academy of sciences of the united states of
america 81(17):5330-5334.
15. Muller S, Sandal T, Kamp-Hansen P, et al. (1998) Comparison of
expression systems in the yeasts Saccharomyces cerevisiae, Hansenula
polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia
lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast
14(14):1267-1283.
16. Faber KN, Harder W, Ab G, et al. (1995) Review - methylotrophic
yeasts as factories for the production of foreign proteins. Yeast
11(14):1331-1344.
17. Ward OP (2012) Production of recombinant proteins by filamentous fungi.
Biotechnology advances 30(5):1119-1139.
18. Nevalainen KM, Te'o VS, Bergquist PL (2005) Heterologous protein
expression in filamentous fungi. Trends in biotechnology 23(9):468-474.
19. Fowler T, Berka RM (1991) Gene expression systems for filamentous fungi.
Current opinion in biotechnology 2(5):691-697.
20. Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and
bacterial disease resistance in crop plants. GM crops 1(4):199-206.
21. Feit C, Sen G, Bartal AH, et al. (1986) A high-affinity monoclonal antibody (GIF-1) to human gamma-interferon: neutralization of interferon mediated inhibition of retrovirus production and 2'-5' (A) synthetase induction. Experimental cell biology 54(4):212-219.
22. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming:
production of antibodies, biopharmaceuticals and edible vaccines in plants.
Trends in plant science 6(5):219-226.
23. Kapusta J, Modelska A, Figlerowicz M, et al. (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13(13):1796-1799.
24. Daniell H, Lee SB, Panchal T, et al. (2001) Expression of the native
cholera toxin B subunit gene and assembly as functional oligomers in transgenic
tobacco chloroplasts. Journal of molecular biology 311(5):1001-1009.
25. Chen HF, Chang MH, Chiang BL, et al. (2006) Oral immunization of mice
using transgenic tomato fruit expressing VP1 protein from enterovirus 71.
Vaccine 24(15):2944-2951.
26. Lai H, Chen Q (2012) Bioprocessing of plant-derived virus-like particles of
Norwalk virus capsid protein under current Good Manufacture Practice
regulations. Plant cell reports 31(3):573-584.
27. Schaaf A, Tintelnot S, Baur A, et al. (2005) Use of endogenous signal sequences for transient production and efficient secretion by moss (Physcomitrella patens) cells. BMC biotechnology 5:1-11
28. Sainsbury F, Canizares MC, Lomonossoff GP (2010) Cowpea mosaic virus:
the plant virus-based biotechnology workhorse. Annual reveiw of phytopathology 48:437-455.
29. Paulus KE, Mahler V, Pabst M, et al. (2011) Silencing beta1,2-xylosyltransferase in transgenic tomato fruits reveals xylose as constitutive component of ige-binding epitopes. Frontiers in plant science 2:42.
30. Fox JL (2003) Puzzling industry response to ProdiGene fiasco. Nature
biotechnology 21(1):3-4.
31. Ruf S, Karcher D, Bock R (2007) Determining the transgene containment
level provided by chloroplast transformation. Proceedings of the National
Academy of Sciences of the United States of America 104(17):6998-7002.
32. Challen MP, Gregory KE, Sreenivasaprasad S (2000) Transformation technologies for mushrooms. Mushroom Science 15(1):10.
33. Binninger DM, Skrzynia C, Pukkila PJ, et al. (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. The EMBO journal
6(4):835-840.
34. Munoz-Rivas A, Specht CA, Drummond BJ, et al. (1986) Transformation of the basidiomycete, Schizophyllum commune. Molecular & general genetics 205(1):103-106.
35. Yanai K, Yonekura K, Usami H, et al. (1996) The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker. Bioscience, biotechnology, and biochemistry 60(3):472-475.
36. Van de Rhee MD, Graca PM, Huizing HJ, et al. (1996) Transformation of the cultivated mushroom, Agaricus bisporus, to Hydromycin B resistance. Molecular & general genetics 250(3):252-258.
37. Ko JL, Hsu CI, Lin RH, et al. (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. European journal of biochemistry 228(2):244-249
38. 湯曉君 (2000) 金針菇免疫調節蛋白 FIP-fve 調控干擾素-γ之研究. 中山醫學院毒理學研究所.
39. Park SE, Li MH, Kim JS, et al. (2007) Purification and characterization of a fibrinolytic protease from a culture supernatant of Flammulina velutipes mycelia. Bioscience, biotechnology, and biochemistry 71:2214-2222.
40. Fukushima M, Ohashi T, Fujiwara Y, et al. (2001) Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Experimental biology and medicine 226:758-765
41. Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current medicinal chemistry 7:715-729.
42. Leung MY, Fung KP, Choy YM (1997) The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology 35:255-63.
43. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied microbiology and biotechnology 60:258-74.
44. Borchers AT, Keen CL, Gershwin ME (2004) Mushrooms, tumors, and immunity: an update. Experimental biology and medicine 229:393-406.
45. Ikekawa T, Ikeda Y, Yoshioka Y, et al. (1982) Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.)Sing.II. The structure of EA3 and further purification of EA5. J Pharmacobiodyn.5:576-581.
46. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Critical review in immunology 19:65-96.
47. Georginan M (1988) Somatic incompatibility and individualism in the coprophilous basidiomycete, Coprinus cinereus. Transactions of the british mycologinal society 91:443-451.
48. 黃亦存 (1996) 真菌的非親和性系統在菌根真菌群體遺傳學研究中的應用. Chinese Biodiversity 4:41-44.
49. 邢來君, 李明春 (1999) 普通真菌學.
50. Casselton LA (2002) Mate recongnition in fungi. Heredity 88:142-147.
51. Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiology and molecular biology reviews 62:55-70.
52. Kües U (2000) Life history and developmental processes in the basidiomycete Corprinus cinereus. Microbiology and molecular biology reviews 64:316-353.
53. Rapper JR (1966) Genetics of sexuality in higher fungi. The Ronald Press.
54. Swiezynski KM , Day PR (1960) Heterokaryon formation in Coprinus lagopus. Genetical research 1:114-128.
55. Swiezynski KM , Day PR (1960) Migration of nuclei in Coprinus lagopus. Genetical research 1:129-139.
56. Brown AJ, Casselton LA (2001) Mating in mushroom : increasing the chances but prolonging the affair. Trends in Genetics 17:393-400.
57. Rajarathnam S, Bano Z (1987) Pleurotus mushrooms. Part I A. Morphology,
life cycle, taxonomy, breeding, and cultivation. Critical reviews in food science
and nutrition 26(2):157-223.
58. Peng M, Singh NK, Lemke PA (1992) Recovery of recombinant plasmids
from Pleurotus ostreatus transformants. Current genetics 22(1):53-59.
59. Irie T, Honda Y, Hirano T, et al. (2001) Stable transformation of Pleurotus ostreatus to Hydromycin B resistance using Lentinus edodes GPD expression signals. Applied microbiology and biotechnology 56(5-6):707-709.
60. Bolker M, Bohnert HU, Braun KH, et al. (1995) Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Molecular & general genetics 248(5):547-552.
61. Kuo CY, Chou SY, Hseu RS, et al. (2010) Heterologous expression of EGFP in enoki mushroom Flammulina velutipes. Botantical studies 51(3):303-309.
62. Kuo CY , Huang CT (2008) A reliable transformation method and heterologous expression of beta-glucuronidase in Lentinula edodes. Journal of
microbiological methods 72(2):111-115.
63. Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, et al. (2005)
Agrobacterium-mediated transformation as a tool for functional genomics in
fungi. Current genetics 48(1):1-17.
64. Kunik T, Tzfira T, Kapulnik Y, et al. (2001) Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America 98(4):1871-1876.
65. Piers KL, Heath JD, Liang X, et al. (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proceedings of the National Academy of Sciences of the United States of America 93(4):1613-1618.
66. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology
behind the 'gene-jockeying' tool. Microbiology and molecular biology reviews
67(1):16-37
67. Gelvin SB, Kim SI (2007) Effect of chromatin upon Agrobacterium T-DNA
integration and transgene expression. Biochimica et biophysica acta
1769(5-6):410-421.
68. Hanif M, Pardo AG, Gorfer M, et al. (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using Hydromycin B as a selectable marker. Current genetics 41(3):183-188.
69. Meyer T (2008) Agrobacterium tumefaciens-mediated transformation of
Fusarium oxysporum f. sp. cubense for pathogenicity gene analysis. Natural and
Agricultural Sciences University of Pretoria.
70. 林浩業 (2012) 建立金針菇同源性篩選系統及B型肝炎口服疫苗之開發. 國立台灣大學生命科學院生化科技學系碩士論文.
71. Borovinskaya MA, Shoji S, Fredrick K, et al. (2008) Structural basis for
Hydromycin B inhibition of protein biosynthesis. Rna 14(8):1590-1599.
72. Gonzalez A, Jimenez A, Vazquez D, et al. (1978) Studies on the mode of action of hydromycin-b, an inhibitor of translocation in eukaryotes. Biochimica et biophysica acta 521(2):459-469.
73. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and
properties of aequorin, a bioluminescent protein from the luminous
hydromedusan, Aequorea. Journal of cellular and comparative physiology
59:223-239.
74. Chalfie M, Tu Y, Euskirchen G, et al. (1994) Green fluorescent protein as a marker for gene-expression. Science 263(5148):802-805.
75. Yang F, Moss LG, Phillips GN, et al. (1996) The molecular structure of green
fluorescent protein. Nature biotechnology 14(10):1246-1251.
76. 呂映慈 (2010) 利用最佳化啟動子提升農桿菌媒介之金針菇表現系統蛋白
質產量. 國立台灣大學微生物與生物化學研究所碩士論文.
77. Burns C, Gregory KE, Kirby M, et al. (2005) Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal genetics and biology 42(3):191-199.
78. Chen X, Stone M, Schlagnhaufer C, et al. (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Applied and environmental microbiology 66(10):4510-4513.
79. 蔡媛禎 (2009) 以農桿菌媒介轉形法作為鮑魚菇異源表達之工具. 國立台灣
大學微生物與生物化學研究所碩士論文.
80. Zacharias DA, Violin JB, Newton AC, et al. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913-916
81. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends in cell biology 10(12):524-530.
82. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell
wall. BioEssays : news and reviews in molecular, cellular and developmental
biology 28(8):799-808.
83. Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends in biotechnology 24(9):426-432.
84. Burton KS, Partis MD, Wood DA, et al. (1997) Accumulation of serine proteinase in senescent sporophores of the cultivated mushroom, Agaricus bisporus. Mycological research 101:146-152.
85. 黃莉欣 (2013) 探討鮑魚菇轉形株菌絲體、子實體與擔孢子之異源基因表現. 國立台灣大學生命科學院生化科技學系碩士論文.
86. Schmidt NJ, Lennette EH, Ho HH (1974) An apparently new enterovirus isolated from patients with disease of the central nervous system. Journal of infectious diseases 129 :304-309.
87. Ho M, Chen ER, Hsu KH, et al. (1999) An epidemic of enterovirus 71 infection in Taiwan. Journal of infectious diseases 341:929-935.
88. Wang JR, Tuan YC, Tsai HP, et al. (2002) Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. Journal of clinical microbiology 40:10-15.
89. Lin TY, Twu SJ, Ho MS, et al. (2003) Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerging infectous diseases journal 9:291-293.
90. Hull HF, Aylward BA (2001) Progress towards global polio eradication. Vaccine 19 :4378-4384.
91. Zhu FC, Meng FY, Li JX, et al. (2013) Efficacy, safety, and immunology of an inactivated alum-adjuvant enterovirus 71 vaccine in children in China: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 381:2024-2032.
92. Chen HL, Huang JY, Chu TW, et al. (2008) Expression of VP1 protein in the milk of transgenic mice: A potential oral vaccine protects against enterovirus 71 infection. Vaccine 26:2882-2889.
93. Chen HF, Chang MH, Chiang BL, et al. (2006) Oral immunization of mice usig transgenic tomato fruit expressing VP1 protein form enterovirus 71. Vaccine 26:2944-2951.
94. Magae Y, Akahane K, Nakanura K, et al. (2005) Simple colorimetric method for detecting degenerate strains of the cultivated basidiomycete Flammulina velutipes (Enokitake). Applied and Environmental Microbiology : 6388–6389.
95. 許瑞祥 (1990) 靈芝屬菌株鑑定系統之研究. 國立臺灣大學農業化學研究所博士論文
96. Torralba S, Pisabarro AG, Remirez L, et al. (2004) Immunofluorescence microscopy of the microtubule cytoskeleton during conjugate division in the dikaryon Pleurotus ostreatus N001. Mycologia 96(1):41-51.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49101-
dc.description.abstract菇類分子農場 (Mushroom molecular pharming) 係以菇類作為生物反應器,生產醫藥用蛋白質或發展為口服疫苗,具有低基因汙染風險、操作簡單及成本便宜等優勢。過去本實驗室以農桿菌媒介轉形法得到多種菇類轉形株,亦發展不同分生策略以提升異源基因之表現,卻發現繼代間異源蛋白質表現量不穩定,推測原因可能係農桿菌媒介轉形法無法確保將異源基因送入所有雙核菌絲的兩個核內,造成繼代雙核菌絲轉形株時會混雜著不等比例的野生型菌絲、僅有一核嵌有異源基因及雙核皆有異源基因之菌絲,而無法獲得穩定表現異源蛋白質的轉形株。因此必須建立雙核菌絲所有核都含有異源基因之篩選方式,以利菇類生產醫藥用蛋白質及口服疫苗之開發。
本篇研究使用前人建構能表現增強型綠色螢光蛋白質
(Enhanced green fluorescent protein;eGFP) 之金針菇 Figpd-d3-2轉形株孢子,以流式細胞分選儀篩選能表現高綠色螢光強度之孢子,並將孢子萌發出來之單核菌絲進行交配,得到全部雙核菌絲之雙核都嵌有異源基因 egfp 的純淨轉形株。結果顯示流式細胞分選儀搭配交配策略可以得到表現異源蛋白質較穩定之轉形株,且 eGFP 表現量高於Figpd-d3-2。本研究是第一篇建立純淨菇類轉形株之研究。
未來可將此技術應用於腸病毒 Enterovirus 71 (EV 71) 及其他傳染性疾病之口服疫苗開發,因此本篇研究亦建構經序列刪減之金針菇 gpd-d1 啟動子表現腸病毒 EV 71 外鞘蛋白 VP1 基因之質體,並利用可於轉譯時斷裂的 2A 胜肽連接報導基因 egfp ,確保轉形株能同時表現 eGFP 和 VP 1,以供往後大量生產腸病毒菇類口服疫苗之應用。
zh_TW
dc.description.abstractMushroom molecular pharming, a novel biotechnology application using mushrooms as bioreactors to produce pharmaceutical proteins or oral vaccines, exhibits advantages such as less genetic pollution, simple operation and lower costs etc. In our laboratory, we have established Agropbacterium-mediated transformantion (AMT) in mushrooms and have tried to enhance heterologous gene expression by various molecular biology strategies. However, the previous studies show that the expression of heterologous proteins varies a lot between subcultures, indicating the mycelia are a mixture of transformants and wild type. Futhermore, it appears AMT does not ensure delivering heterologous genes to the two nuclei of dikaryotic mycelia and lead to transformants with unstable heterologous expression. Therefore, it’s critical to acquire the pure transformants which all nuclei contain heterologous genes for further studies.
In order to establish the pure transformants of Flammulina velutipes in our study, we used Fluorescence-Activated Cell Sorter (FACS) to obtain the green fluorescent spores with high intensity from Figpd-d3-2 transformants and mated the different haploid mycelia germinating from spores. The result shows we have good chances to obtain the pure and stable transformants expressing heterologous proteins with higher intensity of enhanced green fluorescent protein (eGFP) expression than Figpd-d3-2 transformants. This study is the first report regarding the establishment of selecting pure transformants.
In the future, the platform of selecting pure transformants can be applied in oral vaccines of enterovirus 71 or other infectious diseases. We also constructed the plasmid which contains glyceraldehyde-3-phosphate dehydrogenase promoter d1 (gpd-d1) , VP1 as target gene, egfp as report gene, and 2A peptide which can cleave in translation to ensure transformants expressing eGFP and VP1 simultaneously. The selection of pure and stable VP1 transformants is undergoing.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:16:01Z (GMT). No. of bitstreams: 1
ntu-105-R02b22003-1.pdf: 3857363 bytes, checksum: 820f3515930a02d3614dc295f063e75c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 X
第一章 前言 1
一 、 異源表達系統 1
1 . 原核生物表現系統 1
2 . 真核生物表現系統 2
二 、 分子農場 6
1 . 植物分子農場之發展 6
2 . 植物分子農場之優勢 7
3 . 植物分子農場面對之問題 7
三 、 菇類分子農場 9
1 .優勢與發展近況 9
四 、 金針菇 12
1 . 形態特徵與分類地位 12
2 . 栽培優勢與市場價值 12
3 . 藥理活性與應用 13
五 、擔子菌非親和性系統 15
1 .生活史 15
2 .擔子菌非親和系統介紹 15
3 .擔子菌非親和性系統研究 17
六 、 菇類異源表達系統 22
1 . 轉形策略 22
2 . 農桿菌媒介篩選法 23
3 . 篩選標誌 24
4 . 報導基因 25
5 . 分生策略提升異源蛋白質之表現量 26
七 、 菇類分子農場面對之問題 30
1 . 異源蛋白質聚集 30
2 . 異源蛋白質降解 31
3 . 轉形株於繼代間異源蛋白質表現量不穩定 31
八 、 腸病毒 EV 71 32
1 . 腸病毒 EV 71 之介紹 32
2 . 腸病毒 EV 71 孳生之環境 32
3 . 腸病毒 EV 71 之流行 33
4 . 疫苗開發之重要性 33
九 、 研究動機與目的 34
第二章 材料與方法 37
一 、 菌絲與菇體培養條件 37
1 . 菌絲 37
2 . 出菇潛力測試方法 37
3 . 菇體 38
二 、 流式細胞儀分選金針菇轉形株之孢子 40
1 . 上機前樣品之製備 40
2 . 流式細胞儀分選出表現eGFP之孢子 40
三 、 金針菇轉形株菌絲交配方法與觀察 41
1 . 單核菌絲交配方法 41
2 . 以顯微鏡觀察交配成功之特徵 41
四 、 金針菇轉形株 eGFP 表現量之分析 42
1 . 轉形株菌絲螢光顯微鏡觀察 42
2 . 轉形株蛋白質eGFP分析 42
五 、 腸病毒EV71外鞘蛋白VP1表現載體之建構 48
1 . 細菌菌株培養條件 48
2 . 核酸引子序列 48
3 . 表現質體 50
4 .農桿菌電穿孔轉形 53
第三章 實驗結果 55
一 、 流式細胞儀分選 eGFP 轉形株孢子 55
二 、 金針菇單核菌絲交配與觀察 58
1 .單核菌絲交配觀察 58
2 .螢光顯微鏡觀察交配成功之特徵 58
3 .單核菌絲交配型之分析 59
4 . 雙核菌絲出菇潛力之快篩測試 59
5 . 出菇觀察 60
三 、金針菇轉形株eGFP表現量之分析 69
1 . 螢光顯微鏡觀察 69
2 . 酵素連結免疫分析 70
3 . 西方墨點法分析 70
四 、腸病毒EV71外鞘蛋白VP1表現載體之建構 76
1 .表現質體確認 76
第四章 討論 78
一 、 建構雙核皆嵌有異源基因之金針菇轉形株 78
1 . 流式細胞分選儀分選出單一孢子並萌發單核菌絲 78
2 . 各單核菌絲分別進行交配測試 79
3 以 DAPI 染色確認成功交配 (Mating) 之雙核菌絲 80
4 . 出菇潛力測試 80
二 、 比較交配後轉形株與前人建構之轉形株異源蛋白質表現 84
1 . 螢光顯微鏡觀察菌絲綠色螢光亮度差異 84
2 . 轉形株 eGFP 之定性與定量 85
第五章 結論 86
第六章 未來展望 88
第七章 參考文獻 89
dc.language.isozh-TW
dc.title以交配策略建立穩定表現異源基因之金針菇轉形株平台zh_TW
dc.titleEstablishment of stable heterologous gene expression platform by mating strategies in Flammulina velutipesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許瑞祥,林晉玄,吳?承
dc.subject.keyword菇類分子農場,流式細胞分選儀,金針菇,交配,異源基因表現,腸病毒 EV71,zh_TW
dc.subject.keywordmushroom molecular pharming,Fluorescence-Activated Cell Sorter,Flammulina velutipes,mating,heterologous gene expression,Enterovirus 71,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201603237
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved