Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorYi-Ting Leeen
dc.contributor.author李依庭zh_TW
dc.date.accessioned2021-06-15T11:15:48Z-
dc.date.available2021-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation[1] Boisgibault, L. (2015). COP21 objectives: towards a joint energy transition in the Mediterranean. In COP21 (p. 8). IPEMED.
[2] Tokushige, K., Akimoto, K., & Tomoda, T. (2007). Public perceptions on the acceptance of geological storage of carbon dioxide and information influencing the acceptance. International Journal of Greenhouse Gas Control, 1(1), 101-112.
[3] International Energy Agency (2012). “ETP 2012 complete slide deck,” Energy Technology Perspectives 2012. 
[4] International Energy Agency (2010). “ETP 2010 complete slide deck,” Energy Technology Perspectives 2010.
[5] Chang, M. H., Huang, C. M., Liu, W. H., Chen, W. C., Cheng, J. Y., Chen, W., ... & Hsu, H. W. (2013). Design and Experimental Investigation of Calcium Looping Process for 3‐kWth and 1.9‐MWth Facilities. Chemical Engineering & Technology, 36(9), 1525-1532.
[6] Lee, Z. H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2012). Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renewable and Sustainable Energy Reviews, 16(5), 2599-2609.
[7] Sun, P., Grace, J. R., Lim, C. J., & Anthony, E. J. (2007). The effect of CaO sintering on cyclic CO2 capture in energy systems. AIChE Journal, 53(9), 2432-2442.
[8] 楊鈞軸. (2010). 對養殖漁業現階段競爭力之提升及長期永續發展之策略擬訂. 屏東科技大學水產養殖系所學位論文, 1-93.
[9] Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program. International journal of greenhouse gas control, 2(1), 9-20.
[10] Rackley, S. (2009). Carbon capture and storage. Gulf Professional Publishing.
[11] Silaban, A., & Harrison, D. P. (1995). High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO (s) and CO2 (g). Chemical Engineering Communications, 137(1), 177-190.
[12] Romeo, L. M., Abanades, J. C., Escosa, J. M., Paño, J., Giménez, A., Sánchez-Biezma, A., & Ballesteros, J. C. (2008). Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Conversion and Management, 49(10), 2809-2814.
[13] Sánchez-Biezma, A., Paniagua, J., Diaz, L., Lorenzo, M., Alvarez, J., Martínez, D., & Abanades, J. C. (2013). Testing postcombustion CO2 capture with CaO in a 1.7 MW t pilot facility. Energy Procedia, 37, 1-8.
[14] Dieter, H., Bidwe, A. R., Varela-Duelli, G., Charitos, A., Hawthorne, C., & Scheffknecht, G. (2014). Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart. Fuel, 127, 23-37.
[15] Lasheras, A., Ströhle, J., Galloy, A., & Epple, B. (2011). Carbonate looping process simulation using a 1D fluidized bed model for the carbonator. International Journal of Greenhouse Gas Control, 5(4), 686-693.
[16] Wang, W., Ramkumar, S., Li, S., Wong, D., Iyer, M., Sakadjian, B. B., & Fan, L. S. (2010). Subpilot demonstration of the carbonation−calcination reaction (CCR) process: High-temperature CO2 and sulfur capture from coal-fired power plants. Industrial & Engineering Chemistry Research, 49(11), 5094-5101.
[17] Lu, H., Khan, A., Pratsinis, S. E., & Smirniotis, P. G. (2008). Flame-made durable doped-CaO nanosorbents for CO2 capture. Energy & Fuels, 23(2), 1093-1100.
[18] Kelleher, D. E., Mohr, P. J., Martin, W. C., Wiese, W. L., Sugar, J., Fuhr, J. R., ... & Dalton, G. R. (1999, September). New NIST Atomic Spectra Database. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation (pp. 170-179). International Society for Optics and Photonics.
[19] Borgwardt, R. H. (1989). Sintering of nascent calcium oxide. Chemical Engineering Science, 44(1), 53-60.
[20] Abanades, J. C., & Alvarez, D. (2003). Conversion limits in the reaction of CO2 with lime. Energy & Fuels, 17(2), 308-315.
[21] Lee, D. K. (2004). An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chemical Engineering Journal, 100(1), 71-77.
[22] Bhatia, S. K., & Perlmutter, D. D. (1983). Effect of the product layer on the kinetics of the CO2‐lime reaction. AIChE Journal, 29(1), 79-86.
[23] Gupta, H., & Fan, L. S. (2002). Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & engineering chemistry research, 41(16), 4035-4042.
[24] Sun, P., Grace, J. R., Lim, C. J., & Anthony, E. J. (2007). The effect of CaO sintering on cyclic CO2 capture in energy systems. AIChE Journal, 53(9), 2432-2442.
[25] Grasa, G. S., & Abanades, J. C. (2006). CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research, 45(26), 8846-8851.
[26] Thuery, J., Norwood, M.A. (1992). Microwave: industrial, scientific and medical applications, Artech House Inc.
[27] Note, A. (2000). Basics of measuring the dielectric properties of materials. Agilent Technologies.
[28] Davis, G. T., McKinney, J. E., Broadhurst, M. G., & Roth, S. (1978). Electric‐field‐induced phase changes in poly (vinylidene fluoride). Journal of Applied Physics, 49(10), 4998-5002.
[29] Grant, E. H. (1992). Microwaves: Industrial, Scientific and Medical Applications. Artech House, Boston, London.
[30] Apel, D. B., & Dezelic, V. (2005). Using ground penetrating radar (GPR) in analyzing structural composition of mine roof. Mining Engineering, 57(8), 56-61.
[31] Reddy, E. P., & Smirniotis, P. G. (2004). High-temperature sorbents for CO2 made of alkali metals doped on CaO supports. The journal of physical chemistry B, 108(23), 7794-7800.
[32] Borgwardt, R. H. (1989). Sintering of nascent calcium oxide. Chemical Engineering Science, 44(1), 53-60.
[33] Grasa, G. S., & Abanades, J. C. (2006). CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research, 45(26), 8846-8851.
[34] Tokushige, K., Akimoto, K., & Tomoda, T. (2007). Public perceptions on the acceptance of geological storage of carbon dioxide and information influencing the acceptance. International Journal of Greenhouse Gas Control, 1(1), 101-112.
[35] Kittrick, J. A. (1969). SOIL MINERALS IN THE AI~ O3-SiO2-H20 SYSTEM AND A THEORY OF THEIR FORMATION. Clays and Clay Minerals, 17, 157-167.
[36] Romeo, L. M., Abanades, J. C., Escosa, J. M., Paño, J., Giménez, A., Sánchez-Biezma, A., & Ballesteros, J. C. (2008). Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Conversion and Management, 49(10), 2809-2814
[37] Martínez, I., Murillo, R., Grasa, G. S., & Abanades García, J. C. (2011). Integration of a calcium looping system for CO2 capture in an existing power plant.
[38] Rodríguez, N., Alonso, M., Abanades, J. C., Charitos, A., Hawthorne, C., Scheffknecht, G., & Anthony, E. J. (2011). Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO. Energy Procedia, 4, 393-401.
[39] Fuhr, J. R., & Wiese, W. L. (1998). CRC Handbook of Chemistry and Physics. by DR Lide, CRC Press, Boca Raton (2008-2009) Chap, 9, 48.
[40] Li, Y., Zhao, C., Chen, H., Ren, Q., & Duan, L. (2011). CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle. Energy, 36(3), 1590-1598.
[41] Rodriguez, N., Alonso, M., Grasa, G., & Abanades, J. C. (2008). Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO. Chemical Engineering Journal, 138(1), 148-154.
[42] Manovic, V., & Anthony, E. J. (2008). Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environmental science & technology, 42(11), 4170-4174.
[43] Alvarez, D., & Abanades, J. C. (2005). Determination of the critical product layer thickness in the reaction of CaO with CO2. Industrial & engineering chemistry research, 44(15), 5608-5615.
[44] Grasa, G. S., & Abanades, J. C. (2006). CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research, 45(26), 8846-8851.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49093-
dc.description.abstract本研究將台灣目前難以解決之水產廢棄物-牡蠣殼,再利用作為捕集二氧化碳之材料,因其成分富含大量的碳酸鈣,經鍛燒熱處理後會轉化為氧化鈣,為二氧化碳吸收劑,具有理論吸收容量高(44/56=0.876 g CO2/g CaO)、孔隙體積高、能迅速吸收及脫除二氧化碳、可長時間循環再生利用等優點,由牡蠣殼製備得氧化鈣,不但成分安定、成本低廉、取得容易,同時亦能解決牡蠣殼成為汙染環境的問題並有效減緩溫室氣體的排放,降低溫室效應對環境的衝擊。
  鈣迴路技術補集二氧化碳共分為碳酸化程序及鍛燒程序,氧化鈣在碳酸化程序中與二氧化碳結合生成碳酸鈣,於鍛燒程序中受熱再生為氧化鈣,氧化鈣做為可不斷循環再生補集二氧化碳之載體。本研究將傳統的鍛燒程序改良為微波熱處理程序,微波設備發射出之電磁波經由電磁場方式傳遞,能穿透物質使物質均勻且迅速加熱,特點為反應時間短、反應溫度較低即可達到鍛燒效果。鈣基吸收劑(Ca-based sorbent)在傳統高溫鍛燒時會產生燒結現象(sintering),因操作溫度過高導致吸收劑顆粒結晶表面變質、孔隙率及比表面積減少造成材料劣化、吸收容量降低,將微波熱處理應用於鍛燒程序,可降低反應溫度、縮短反應時間、提升轉化效率,以期能改善氧化鈣吸收劑的燒結現象、提高捕集二氧化碳的循環次數並增加吸收劑的使用效率。
利用牡蠣殼粉作為二氧化碳捕集的材料為確實可行,在多循環碳捕集中,牡蠣殼粉在第三個循環,碳酸化轉化率可優於商用碳酸鈣,因為其成分含有雜質能使吸收劑在鍛燒過程中不至劣化太快,微波鍛燒程序可以有效降低操作溫度及減緩牡蠣殼粉的燒結現象,使之碳酸化轉化率保持穩定,得到更佳的二氧化碳捕集容量,與傳統鍛燒程序相較之下,微波可有效減少能源消耗節省反應時間,作為取代傳統鍛燒程序相當具有發展的潛力。
zh_TW
dc.description.abstractCalcium looping cycle, post-combustion is an emerging, energy-efficient, low cost, technology which used CaO as regenerable sorbents of CO2 capturing through the carbonation/calcination reaction cycles. The cost, stability and sustainability of the sorbent are important in the design of these systems. In this study, waste oyster shell was used as raw material for calcium-based sorbent and microwave thermal treatment was applied to the calcination process. The simulated sintering conditions of sorbent occurred in the calcination reaction process and the higher heating temperature resulted in more particle expansion and sintering. Microwave irradiation heating of sorbent was proposed to lower the operating temperature of the calcination and aimed to prevent the absorbent from sintering. The sorbents were characterized using thermogravimetric analysis (TGA), X-Ray diffraction (XRD), scanning electron microscopy (SEM), and tested in the carbonation-calcination cycles. In comparison to the conventional calcination, microwave thermal treated sorbents showed better conversions after a longer series of capturing CO2 cycles and more efficient approach to reduce the electric energy consumption and process time. CO2 capture using oyster shell powder as a sorbent was investigated during the cyclic calcination/carbonation process. Oyster shell powder have higher carbonation conversions than commercial CaCO3 after third calcium looping cycle at the same reaction conditions. Impurity can improve the carbonation conversion of calcium-based sorbents, and this may be a factor contributing to the shells demonstrating a better cyclic CO2 capture performance.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:15:48Z (GMT). No. of bitstreams: 1
ntu-105-R03541125-1.pdf: 3770890 bytes, checksum: a7858362b812ba6622b38e864895c64e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Objectives 3
Chapter 2 Literature Review 4
2.1 Waste Oyster Shell 4
2.1.1 Environmental Problem of Waste Oyster Shell 4
2.2 Carbon Capture and Storage (CCS) Technology 5
2.2.1 Carbon Dioxide Capture 5
2.2.2 Carbon Dioxide Storage 7
2.3 Calcium looping 8
2.3.1 Principles of Calcium Looping 8
2.3.2 Advantages of Calcium Looping 9
2.3.3 International Pilot Plant of Calcium Looping 10
2.4 Characterization of CaO-based sorbent 11
2.4.1 Kinetics of Carbonation reaction 11
2.4.2 Thermodynamics of Carbonation reaction 12
2.4.3 Shrinking Core Model (SCM) 13
2.4.4 Sintering 14
2.4.5 Characteristic of Multiple Ca-looping Cycles 16
2.5 Microwave Calcination Technology 17
2.5.1 Mechanisms of Microwave Irradiation 17
2.5.2 Advantages of Microwave Calcination 19
Chapter 3 Materials and Methods 20
3.1 Research Flowchart 20
3.2 Materials and Instrument 21
3.2.1 Source of Agents 21
3.2.2 Instrument 22
3.3 Experiment 24
3.3.1 Oyster Shell Pretreatment 24
3.3.2 Microwave Calcination 24
3.3.3 Conventional Furnace Calcination 24
3.3.4 CO2 Capture Analysis 25
3.4 Analytical Techniques 27
3.4.1 Thermogravimetric Analysis (TGA) 27
3.4.2 Scanning Electron Microscope (SEM) Analysis 27
3.4.3 X-ray Diffractometer (XRD) Analysis 28
Chapter 4 Results and Discussion 29
4.1 Physico-chemical Properties of Oyster Shell 29
4.1.1 ICP-OES Results 29
4.1.2 Moisture Content 30
4.1.3 Particle Size and Density 31
4.2 Microwave Calcination 32
4.2.1 Effect of Microwave Power Level on Reaction Temperature 32
4.2.2 Effect of Microwave Power Level on Reaction Heating Rate 36
4.2.3 Effect of Microwave Power Level on CaO Conversion 38
4.3 Carbon Dioxide Capture Behavior 40
4.3.1 TGA Analysis 40
4.3.2 Effect of Carbonation Temperature on Carbonation Conversion 42
4.3.3 Effect of Carbonation Duration on Carbonation Conversion 44
4.3.4 Effect of Carbonation/Calcination Temperature on Carbonation Conversion 46
4.3.5 Multiple Calcium Looping Cycle 48
4.4 Comparison of Microwave and Conventional Calcination 52
4.4.1 Carbonation Conversion 52
4.4.2 Scanning Electron Microscope (SEM) Analysis 54
4.4.3 Energy Consumption 57
Chapter 5 Conclusions and Recommendations 58
5.1 Conclusions 58
5.2 Recommendations 59
REFERENCES 60
dc.language.isoen
dc.title以微波鍛燒法回收廢牡蠣殼為氧化鈣並應用於二氧化碳捕集之研究zh_TW
dc.titleCarbon Dioxide Capture by Recovered Calcium Oxide from Waste Oyster Shells via Microwave Calcinationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee闕蓓德,胡景堯
dc.subject.keyword鈣迴路,二氧化碳補集,微波鍛燒,牡蠣殼,氧化鈣,zh_TW
dc.subject.keywordCalcium-based sorbent,Calcium looping cycle,Carbon dioxide capture,oyster shell,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201603268
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved