請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49088
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
dc.contributor.author | Hsin-Jung Chu | en |
dc.contributor.author | 朱信融 | zh_TW |
dc.date.accessioned | 2021-06-15T11:15:40Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | [1] R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, et al., 'Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,' Nature materials, vol. 9, pp. 929-937, 2010.
[2] D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, et al., 'Epidermal electronics,' science, vol. 333, pp. 838-843, 2011. [3] T. Takahashi, K. Takei, A. G. Gillies, R. S. Fearing, and A. Javey, 'Carbon nanotube active-matrix backplanes for conformal electronics and sensors,' Nano letters, vol. 11, pp. 5408-5413, 2011. [4] T. Furukawa, 'Ferroelectric properties of vinylidene fluoride copolymers,' Phase Transitions: A Multinational Journal, vol. 18, pp. 143-211, 1989. [5] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocomposites,' Composites science and technology, vol. 63, pp. 2223-2253, 2003. [6] L. Rayleigh, 'XX. On the equilibrium of liquid conducting masses charged with electricity,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, pp. 184-186, 1882. [7] J. Zeleny, 'The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces,' Physical Review, vol. 3, p. 69, 1914. [8] A. Formhals, 'Process and Applications for Preparing Artificial Threads,' U. S Patent, vol. 1, p. 504, 1934. [9] F. Anton, 'Method and apparatus for the production of fibers,' ed: Google Patents, 1938. [10] F. Anton, 'Method of producing artificial fibers,' ed: Google Patents, 1939. [11] V. G. Drozin, 'The electrical dispersion of liquids as aerosols,' Journal of colloid science, vol. 10, pp. 158-164, 1955. [12] G. Taylor, 'Disintegration of Water Drops in an Electric Field,' Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964. [13] J. Doshi and D. H. Reneker, 'Electrospinning process and applications of electrospun fibers,' in Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, 1993, pp. 1698-1703. [14] J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, 'The effect of processing variables on the morphology of electrospun nanofibers and textiles,' Polymer, vol. 42, pp. 261-272, 1// 2001. [15] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, 'The change of bead morphology formed on electrospun polystyrene fibers,' Polymer, vol. 44, pp. 4029-4034, 6// 2003. [16] W. E. Teo and S. Ramakrishna, 'A review on electrospinning design and nanofibre assemblies,' Nanotechnology, vol. 17, p. R89, 2006. [17] H. Yoshimoto, Y. Shin, H. Terai, and J. Vacanti, 'A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,' Biomaterials, vol. 24, pp. 2077-2082, 2003. [18] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, 'Electrospinning of collagen nanofibers,' Biomacromolecules, vol. 3, pp. 232-238, 2002. [19] D. Li, Y. Wang, and Y. Xia, 'Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,' Nano letters, vol. 3, pp. 1167-1171, 2003. [20] C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, 'Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,' Biomaterials, vol. 25, pp. 877-886, 2// 2004. [21] P. D. Dalton, D. Klee, and M. Moller, 'Electrospinning with dual collection rings,' Polymer, vol. 46, pp. 611-614, 1/26/ 2005. [22] B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, 'Electrospinning of continuous aligned polymer fibers,' Applied physics letters, vol. 84, pp. 1222-1224, 2004. [23] J. Curie and P. Curie, 'Development by pressure of polar electricity in hemihedral crystals with inclined faces,' Bull. soc. min. de France, vol. 3, p. 90, 1880. [24] G. Lippmann, 'Principe de la conservation de l'electricite, ou second principe de la theorie des phenomenes electriques,' J. Phys. Theor. Appl., vol. 10, pp. 381-394, 1881 1881. [25] A. Manbachi and R. S. Cobbold, 'Development and application of piezoelectric materials for ultrasound generation and detection,' Ultrasound, vol. 19, pp. 187-196, 2011. [26] 'IEEE Standard on Piezoelectricity,' ANSI/IEEE Std 176-1987, p. 0_1, 1988. [27] 陳漢龍, '提升孔洞駐極體材料致動與感測特性之研究,' 臺灣大學工程科學及海洋工程學研究所學位論文, 臺灣大學, 2012. [28] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials: Oxford university press, 1977. [29] K. Heiji, 'The Piezoelectricity of Poly (vinylidene Fluoride),' Japanese Journal of Applied Physics, vol. 8, p. 975, 1969. [30] Q. M. Zhang, V. Bharti, and X. Zhao, 'Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,' Science, vol. 280, pp. 2101-2104, 1998-06-26 00:00:00 1998. [31] A. J. Lovinger, 'Ferroelectric Polymers,' Science, vol. 220, pp. 1115-1121, 1983-06-10 00:00:00 1983. [32] R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, 'Crystal Structures of Three Crystalline Forms of Poly(vinylidene fluoride),' Polym J, vol. 3, pp. 600-610, 09//print 1972. [33] G. Davis, J. McKinney, M. Broadhurst, and S. Roth, 'Electric‐field‐induced phase changes in poly (vinylidene fluoride),' Journal of Applied Physics, vol. 49, pp. 4998-5002, 1978. [34] Y. Higashihata, J. Sako, and T. Yagi, 'Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers,' Ferroelectrics, vol. 32, pp. 85-92, 1981. [35] O. Hiroji and K. Keiko, 'Ferroelectric Copolymers of Vinylidenefluoride and Trifluoroethylene with a Large Electromechanical Coupling Factor,' Japanese Journal of Applied Physics, vol. 21, p. L455, 1982. [36] G. Taylor, 'Electrically driven jets,' in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1969, pp. 453-475. [37] C. S. Kong, S. J. Choi, H. S. Lee, and H. S. Kim, 'Observation of Electrospinning Behavior of Nanoscale Fibers by a High-Speed Camera,' Journal of Macromolecular Science, Part B, vol. 55, pp. 201-210, 2016. [38] 杜. 吳大誠, 高緒珊, '奈米纖維,' 2004. [39] 丁嘉展, '電紡成形條件對紡絲之形貌與直徑之影響,' Department of Mechanical Engineering College of Engineering, National Chiao Tung University, 2010. [40] L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, et al., 'High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene),' Nature communications, vol. 4, p. 1633, 2013. [41] K. Kuniko and O. Hiroji, 'Polarization Behavior in Vinylidene Fluoride-Trifluoroethylene Copolymer Thin Films,' Japanese Journal of Applied Physics, vol. 25, p. 383, 1986. [42] K. Koga and H. Ohigashi, 'Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers,' Journal of Applied Physics, vol. 59, pp. 2142-2150, 1986. [43] M. Barique and H. Ohigashi, 'Annealing effects on the Curie transition temperature and melting temperature of poly (vinylidene fluoride/trifluoroethylene) single crystalline films,' Polymer, vol. 42, pp. 4981-4987, 2001. [44] B.-E. El Mohajir and N. Heymans, 'Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure,' Polymer, vol. 42, pp. 5661-5667, 6// 2001. [45] D. Mao, M. Quevedo-Lopez, H. Stiegler, B. E. Gnade, and H. N. Alshareef, 'Optimization of poly (vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics,' Organic Electronics, vol. 11, pp. 925-932, 2010. [46] D. Mao, B. E. Gnade, and M. A. Quevedo-Lopez, Ferroelectric Properties and Polarization Switching Kinetic of poly (vinylidene fluoride-trifluoroethylene) Copolymer: INTECH Open Access Publisher, 2011. [47] J. A. Giacometti and O. Oliveira, 'Corona charging of polymers,' IEEE Transactions on Electrical Insulation, vol. 27, pp. 924-943, 1992. [48] W. Grassi and D. Testi, 'Induction of waves on a horizontal water film by an impinging corona wind,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, pp. 377-385, 2009. [49] P. Southgate, 'Room‐temperature poling and morphology changes in pyroelectric polyvinylidene fluoride,' Applied Physics Letters, vol. 28, pp. 250-252, 1976. [50] D. K. Das Gupta and K. Doughty, 'Changes in x‐ray diffraction patterns of polyvinylidene fluoride due to corona charging,' Applied Physics Letters, vol. 31, pp. 585-587, 1977. [51] G. T. Davis, J. E. McKinney, M. G. Broadhurst, and S. C. Roth, 'Electric‐field‐induced phase changes in poly(vinylidene fluoride),' Journal of Applied Physics, vol. 49, pp. 4998-5002, 1978. [52] A. Kumar and M. Periman, 'Simultaneous stretching and corona poling of PVDF and P (VDF-TriFE) films. II,' Journal of Physics D: Applied Physics, vol. 26, p. 469, 1993. [53] Z. Wang, 'Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques,' 2011. [54] 'Standard Test Method for Tensile Properties of Thin Plastic Sheeting,' ed: ASTM International, 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49088 | - |
dc.description.abstract | 本論文旨在以滾輪式收集器並控制靜電紡絲之各項參數,製造出具有高排列性的聚(偏氟乙烯-三氟乙烯) (polyvinylidene fluoride/trifluoroethylene, P(VDF-TrFE))(75/25)薄膜,此材料為鐵電性材料,具有良好的壓電性質、化學抗性、生物相容性及可撓性等等,故利用其作為可撓性壓電感測器的開發,並且為了提升其表現,藉由靜電紡絲製程,將絲線做成具有高度排列性,此特性可以令薄膜具有更多的β相,並且提升其作為感測器的靈敏度,並且為了進一步提升其作為感測器之效能,多加入了退火以及電暈極化的製程,令P(VDF-TrFE)之α相減少、β相更明顯,壓電特性更佳。文中將使用高壓交流電設備量測並繪製電滯曲線(Hysteresis loop),以此判定其鐵電性質,再用掃描式電子顯微鏡與X-射線繞射儀器量測其表面結構、排列性以及薄膜所形成的晶相。雖然P(VDF-TrFE)經過靜電紡絲以及退火的過程提升了薄膜的韌性,但是在非軸向的結構十分脆弱,故以旋轉塗佈之方式將聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)塗布至薄膜上,改善薄膜於非軸向之機械強度,並且提升其抗候性,提升其作為可撓式壓電感測器之潛力。 | zh_TW |
dc.description.abstract | Using the electrospinning process to fabricate highly aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)(75/25) were the main research topic in this thesis and we found the optimal parameters of electrospinning process to fabricate the highly aligned membrane. (P(VDF-TrFE) was a ferroelectric material and having several advantages, such as good chemical stability, high sensitivity, biocompatibility and strong piezoelectricity. Because of the above-mentioned advantages, (P(VDF-TrFE) membrane was suitable for the development of flexible sensors. After electrospinning process, (P(VDF-TrFE) nanofiber was aligned to become highly aligned membrane and it provided (P(VDF-TrFE) with more β phase, i.e., with higher piezoelectric performance. Furthermore, we used annealing and corona poling processes to enhance the piezoelectricity of (P(VDF-TrFE). In this thesis, we measured the hysteresis loop of (P(VDF-TrFE) membrane to determine its ferroelectricity. We also used X-ray diffraction (XRD) and scanning electron microscope(SEM) to observe its crystallization and surface structure. Although P(VDF-TrFE) was identified to have improved mechanical properties along the fiber axial orientation after electrospinning and annealing process, it was found to be weak along the lateral axis. To alleviate this problem, we coated polydimethylsiloxane (PDMS) on the membrane to enhance its mechanical properties, water resistant and promote potential on application of flexible sensor. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:15:40Z (GMT). No. of bitstreams: 1 ntu-105-R03543046-1.pdf: 5455116 bytes, checksum: 6805e2e6d344c2ddadcf901c48a406d8 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xii Chapter 1 緒論 1 1.1 研究背景及動機 1 1.2 文獻回顧與分類討論 2 1.3 論文架構 9 Chapter 2 高分子鐵電材料 10 2.1 壓電材料簡介 10 2.2 壓電本構方程式 11 2.3 焦電效應與鐵電效應 14 2.4 聚(偏氟乙烯-三氟乙烯) 15 Chapter 3 工作原理 19 3.1 靜電紡絲 19 3.2 聚(偏氟乙烯-三氟乙烯)感測器 22 Chapter 4 研究方法及實驗架設 26 4.1 靜電紡絲 26 4.1.1 簡介 26 4.1.2 靜電紡絲實驗架設 26 4.2 退火及電暈放電 27 4.2.1 簡介 27 4.2.2 退火及電暈放電實驗架設 30 4.3 聚(偏氟乙烯-三氟乙烯)感測器 31 4.3.1 簡介 31 4.3.2 聚二甲基矽氧烷 31 4.3.3 聚(偏氟乙烯-三氟乙烯)感測器實驗架設 32 Chapter 5 實驗結果與討論 34 5.1 靜電紡絲參數之選擇 34 5.1.1 溶劑比例 34 5.1.2 溶液供給速率 37 5.1.3 轉速控制 39 5.1.4 電壓控制 40 5.2 聚(偏氟乙烯-三氟乙烯)薄膜性質 43 5.2.1 機械性質 43 5.2.2 排列性 46 5.2.3 晶相 47 5.2.4 鐵電性質與壓電表現 49 Chapter 6 結論與未來展望 58 6.1 結論 58 6.2 未來展望 59 REFERENCE 60 | |
dc.language.iso | zh-TW | |
dc.title | 以靜電紡絲研製高排列性聚(偏氟乙烯-三氟乙烯)薄膜及相關複合膜應用之研究 | zh_TW |
dc.title | Research on the Electrospinning Processed Highly Aligned P(VDF-TrFE) and Related Composite Film Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許聿翔(Yu-Hsiang Hsu),柯文清(Wen-Ching Ko),陳昱吉(Yu-Chi Chen) | |
dc.subject.keyword | 靜電紡絲,鐵電材料,可撓式感測器,聚(偏氟乙烯-三氟乙烯), | zh_TW |
dc.subject.keyword | Electrospinning,Ferroelectric material,flexible sensor,P(VDF-TrFE), | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU201602942 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。