請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇(Hung-Yu Wei) | |
| dc.contributor.author | Yan-Bin Chen | en |
| dc.contributor.author | 陳彥賓 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:15:35Z | - |
| dc.date.available | 2017-10-05 | |
| dc.date.copyright | 2016-10-05 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-20 | |
| dc.identifier.citation | Bibliography
[1] D. Bol, G. de Streel, and D. Flandre. Can we connect trillions of iot sensors in a sustainable way? a technology/circuit perspective (invited). In 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pages 1–3, Oct 2015. [2] A. Rahmati and L. Zhong. Context-based network estimation for energy-efficient ubiquitous wireless connectivity. IEEE Transactions on Mobile Computing, 10(1): 54–66, Jan 2011. [3] WAVESTAR company. http://wavestarenergy.com/. Accessed: 2016- 05. [4] Simiao Niu, Xiaofeng Wang, Fang Yi, Yu Sheng Zhou, and Zhong Lin Wang. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nature Communications, 6(8975), Dec 2015. [5] Marine Current Turbines Ltd. ttp://www.marineturbines.com/. Accessed: 2016-05. [6] Gil Reiter. Wireless connectivity for the Internet of Things. Technical report, Texas Instruments, June 2014. http://www.ti.com/lit/wp/swry010/swry010.pdf. [7] Link Labs: 5 Types of Wireless Technology For The IoT. http://www.link-labs.com/types-of-wireless-technology/, Feburary 26 2015. Accessed: 2016-05. [8] RS-online: 11 Internet of Things (IoT) Protocols You Needto Know About. http://www.rs-online.com/designspark/electronics/knowledge-item/eleven-internet-of-things-iot-protocols-you-need-to-know-about. Accessed: 2016-05. [9] Anuva: The Ultimate Guide On IoT Wireless Technologies. http://anuva.com/blog/iot-wireless-technologies/, June 2 2015. Accessed: 2016-05. [10] Ming-Yuan Cheng, Guan-Yu Lin, Hung-Yu Wei, and A.C.-C. Hsu. Overload control for Machine-Type-Communications in LTE-Advanced system. IEEE Communications Magazine, 50(6):38–45, Jun 2012. [11] Xiaomin Zhang. A new method for analyzing nonsaturated IEEE 802.11 DCF net-works. IEEE Wireless Communications Letters, 2(2):243–246, February 2013. [12] Yayu Gao, Xinghua Sun, and Lin Dai. Throughput optimization of heterogeneous IEEE 802.11 DCF networks. IEEE Transactions on Wireless Communications, 12(1):398–411, January 2013. [13] Giuseppe Bianchi and Ilenia Tinnirello. Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. In IEEE Societies INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, volume 2, pages 844–852, March 2003. [14] T. Vercauteren, A.L. Toledo, and Xiaodong Wang. Batch and sequential Bayesian estimators of the number of active terminals in an IEEE 802.11 network. IEEE Transactions on Signal Processing, 55(2):437–450, February 2007. [15] Ching-Chun Kuan, Guan-Yu Lin, Hung-Yu Wei, and Rath Vannithamby. Reliable multicast and broadcast mechanisms for energy-harvesting devices. IEEE Transactions on Vehicular Technology, 63(4):1813–1826, May 2014. [16] Hsiang-Ho Lin, Mei-Ju Shih, Hung-Yu Wei, and Rath Vannithamby. Deepsleep:IEEE 802.11 enhancement for energy-harvesting machine-to-machine communications. Wireless Networks, 21(2):357–370, 2015. [17] Mei-Ju Shih, Guan-Yu Lin, and Hung-Yu Wei. Two paradigms in cellular iot access for energy-harvesting M2M devices: Push-based versus pull-based. IET Wireless Sensor Systems, April 2016. [18] Mei-Ju Shih, Yuan-Chi Pang, Guan-Yu Lin, Hung-Yu Wei, and Rath Vannithamby. Performance evaluation for energy-harvesting machine-type communication in LTE-A system. In 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pages 1–5, May 2014. [19] Ming-Yuan Cheng, Yan-Bin Chen, Hung-Yu Wei, and Winston K.G. Seah. Event-driven energy-harvesting wireless sensor network for structural health monitoring. In 2013 IEEE 38th Conference on Local Computer Networks (LCN), pages 364–372, October 2013. [20] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013. [21] Giuseppe Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3):535–547, March 2000. [22] P. Chatzimisios, A.C. Boucouvalas, and V. Vitsas. IEEE 802.11 packet delay-a finite retry limit analysis. In IEEE Global Telecommunications Conference, 2003. GLOBECOM ’03., volume 2, pages 950–954, December 2003. [23] Chuan Heng Foh and Juki Wirawan Tantra. Comments on IEEE 802.11 saturation throughput analysis with freezing of backoff counters. IEEE Communications Letters, 9(2):130–132, February 2005. [24] Sakurai Taka and Hai L. Vu. MAC access delay of IEEE 802.11 DCF. IEEE Transactions on Wireless Communications, 6(5):1702–1710, May 2007. [25] Yang Xiao. Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Transactions on Wireless Communications, 4(4): 1506–1515, July 2005. [26] Ilenia Tinnirello, Giuseppe Bianchi, and Yang Xiao. Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology, 59(3):1055–1067, March 2010. [27] Emad Felemban and Eylem Ekici. Single hop IEEE 802.11 DCF analysis revisited: Accurate modeling of channel access delay and throughput for saturated and unsaturated traffic cases. IEEE Transactions on Wireless Communications, 10(10):3256–3266, October 2011. [28] Pui King Wong, Dongjie Yin, and Tony T. Lee. Analysis of non-persistent CSMA protocols with exponential backoff scheduling. IEEE Transactions on Communications, 59(8):2206–2214, August 2011. [29] Pui King Wong, Dongjie Yin, and Tony T. Lee. Performance analysis of Markov modulated 1-persistent CSMA/CA protocols with exponential backoff scheduling. Wireless Networks, 17(8):1763–1774, November 2011. [30] Stefania Sesia, Issam Toufik, and Matthew Baker, editors. LTE-The UMTS Long Term Evolution, chapter 4.4.1 MAC Architecture, pages 104 –105. John Wiley and Sons Ltd., first edition, 2009. [31] Kunho Hong, SuKyoung Lee, Kyungsoo Kim, and YoonHyuk Kim. Channel condition based contention window adaptation in IEEE 802.11 WLANs. IEEE Transactions on Communications, 60(2):469–478, February 2012. [32] Yan-Bin Chen, Guan-Yu Lin, and Hung-Yu Wei. Dynamic estimation of unsaturated buffer in context-aware M2M WiFi network. In IEEE International Conference on Internet of Things 2014, September 2014. [33] Yan-Bin Chen, Guan-Yu Lin, and Hung-Yu Wei. A dynamic estimation of the unsaturated buffer in the IEEE 802.11 dcf network: A particle filter framework approach. IEEE Transactions on Vehicular Technology, 65(7):5397–5409, July 2016. [34] Ken Duffy, David Malone, and Douglas J. Leith. Modeling the 802.11 distributed coordination function in non-saturated conditions. IEEE Communications Letters, 9(8):715–717, August 2005. [35] David Malone, Ken Duffy, and Doug Leith. Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1):159–172, February 2007. [36] F. Daneshgaran, M. Laddomada, F. Mesiti, and M. Mondin. Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications, 7(4):1276–1286, April 2008. [37] P. Latkoski, Z. Hadzi-Velkov, and B. Popovski. Extended model for performance analysis of non-saturated IEEE 802.11 DCF in erroneous channel. In 2006 IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), pages 783–788, October 2006. [38] Qian Dong and Waltenegus Dargie. Analysis of collision probability in unsaturated situation. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 772–777, New York, NY, USA, March 2010. ACM. [39] Ertan Onur, Yunus Durmus, and Ignas Niemegeers. Cooperative density estimation in random wireless Ad Hoc networks. IEEE Communications Letters, 16(3):331–333, March 2012. [40] Andrea Zanella. Estimating collision set size in framed slotted aloha wireless networks and RFID systems. IEEE Communications Letters, 16(3):300–303, January 2012. [41] Georage Casella and Roger L. Berger. Statistical Inference, chapter 7. Duxbury Thomson Learning, 511 Forest Lodge Road, Pacific Grove, CA 93950 USA, second edition, 2002. [42] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February 2002. [43] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3):197–208, July 2000. [44] Petar M. Djuric, Jayesh H. Kotecha, Jianqui Zhang, Yufei Huang, Tadesse Ghirmai, Monica F. Bugallo, and Joaquin Miguez. Particle filtering. IEEE Signal Processing Magazine, 20(5):19–38, September 2003. [45] Augustine Kong, Jun S. Liu, and Wing Hung Wong. Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 89(425):278–288, March 1994. [46] Thomas Karagiannis, Mart Molle, Michalis Faloutsos, and Andre Broido. A nonstationary Poisson view of Internet traffic. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, volume 3, pages 1558–1569, March 2004. [47] Muhammad Asad Arfeen, Krzysztof Pawlikowski, Andreas Willig, and Don McNickle. Internet traffic modelling: from superposition to scaling. IET Networks, 3(1):30–40, March 2014. [48] H. Vincent Poor, editor. An introduction to signal detection and estimation, chapter IV.B Bayesian Parameter Estimation. Springer, second edition, 1994. [49] Xinhua Ling, Lin X. Cai, Jon W. Mark, and Xuemin Shen. Performance analysis of IEEE 802.11 DCF with heterogeneous traffic. In 4th IEEE Consumer Communications and Networking Conference, 2007. CCNC 2007, pages 49–53, January 2007. [50] S.H. Nguyen, H.L. Vu, and L.L.H. Andrew. Performance analysis of IEEE 802.11 WLANs with saturated and unsaturated sources. IEEE Transactions on Vehicular Technology, 61(1):333–345, January 2012. [51] Athanasios Kottas, Ziwei Wang, and Abel Rodr 韌 uez. Spatial modeling for risk assessment of extreme values from environmental time series: a bayesian nonparametric approach. Environmetrics, 23(8):649–662, 2012. [52] C Fonseca and H Ferreira. Stability and contagion measures for spatial extreme value analyses. arXiv preprint arXiv:1206.1228, 2012. [53] Joshua P French and Stephan R Sain. Spatio-temporal exceedance locations and confidence regions. Annals of Applied Statistics. Prepress, 2013. [54] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer networks, 38(4):393–422, 2002. [55] Fatemeh Fazel, Maryam Fazel, and Milica Stojanovic. Random access sensor networks: Field reconstruction from incomplete data. In IEEE Information Theory and Applications Workshop (ITA), pages 300–305, 2012. [56] Javier Matamoros, Flavio Fabbri, Carles Anton-Haro, and Davide Dardari. On the estimation of randomly sampled 2d spatial fields under bandwidth constraints. IEEE Transactions on Wireless Communications,, 10(12):4184–4192, 2011. [57] Jie Xu, Yiannis Andrepoulos, Yuanzhang Xiao, and Mihaela van der Schaar. Non-stationary resource allocation policies for delay-constrained video streaming: Application to video over internet-of-things-enabled networks. IEEE Journal on Selected Areas in Communications, 32(4):782–794, 2014. [58] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. Internet of things (iot): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7):1645–1660, 2013. [59] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura, Mark Harrison, M Eisenhauer, et al. Internet of things strategic research roadmap. O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, et al., Internet of Things: Global Technological and Societal Trends, 1:9–52, 2011. [60] Debasis Bandyopadhyay and Jaydip Sen. Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1): 49–69, 2011. [61] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497–1516, 2012. [62] Joao B Borges Neto, Thiago H Silva, Renato Martins Assuncao, Raquel AF Mini, and Antonio AF Loureiro. Sensing in the collaborative internet of things. Sensors, 15(3):6607–6632, 2015. [63] IBM: A Smarter Planet, 10 2010. [64] CeNSE, 10 2011. [65] Charith Perera, Arkady Zaslavsky, Chi Harold Liu, Michael Compton, Peter Christen, and Dimitrios Georgakopoulos. Sensor search techniques for sensing as a service architecture for the internet of things. Sensors Journal, IEEE, 14(2):406–420, 2014. [66] Mohammad Alwadi and Girija Chetty. Sensor selection scheme in temperature wireless sensor network. CoRR, abs/1506.07651, Jun 2015. [67] Biao Song, Wendong Xiao, and Zhaohui Zhang. Quality of estimation guaranteed energy efficient sensor selection in wireless sensor networks. In 2014 11th World Congress on Intelligent Control and Automation (WCICA), pages 1620–1624, Jun 2014. [68] Yilin Mo, Roberto Ambrosino, and Bruno Sinopoli. Sensor selection strategies for state estimation in energy constrained wireless sensor networks. Automatica, 47(7): 1330 – 1338, Jul 2011. [69] Wen Yang and Hongbo Shi. Sensor selection schemes for consensus based distributed estimation over energy constrained wireless sensor networks. Neurocomputing, 87:132 – 137, Jun 2012. [70] M. Calvo-Fullana, J. Matamoros, and C. Anton-Haro. Sensor selection in energy harvesting wireless sensor networks. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 43–47, Dec 2015. [71] S. Guo, Y. Yang, and Y. Yang. Wireless energy harvesting and information processing in cooperative wireless sensor networks. In 2015 IEEE International Conference on Communications (ICC), pages 5392–5397, Jun 2015. [72] H. Chen, Y. Li, J. L. Rebelatto, B. F. Uchoa-Filho, and B. Vucetic. Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7):1700–1711, Apr 2015. [73] Y. H. Lee and K. H. Liu. Battery-aware relay selection for energy-harvesting relays with energy storage. In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1786–1791, Aug 2015. [74] Ido Nevat, Gareth W Peters, Francois Septier, and Tomoko Matsui. Estimation of spatially correlated random fields in heterogeneous wireless sensor networks. Signal Processing, IEEE Transactions on, 63(10):2597–2609, 2015. [75] Ido Nevat, Gareth W Peters, and Iain B Collings. Random field reconstruction with quantization in wireless sensor networks. IEEE Transactions on Signal Processing, 61:6020–6033, 2013. [76] I.F. Akyildiz, M.C. Vuran, and O.B. Akan. On exploiting spatial and temporal correlation in wireless sensor networks. Proceedings of WiOpt?4: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pages 71–80, 2004. [77] Mehmet C. Vuran, Ozg ? ur B. Akan, and Ian F. Akyildiz. Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks Journal, Elsevier, 45:245–259, 2004. [78] D. Gu and H. Hu. Spatial gaussian process regression with mobile sensor networks. IEEE Transactions on Neural Networks and Learning Systems,, 23(8):1279–1290, 2012. [79] Ido Nevat, Gareth W Peters, and Iain B Collings. Location-aware cooperative spectrum sensing via gaussian processes. In Communications Theory Workshop (AusCTW), 2012 Australian, pages 19–24. IEEE, 2012. [80] P. Agrawal and N. Patwari. Correlated link shadow fading in multi-hop wireless networks. IEEE Transactions on Wireless Communications, 8(8):4024–4036, 2009. [81] S. Park and S. Choi. Gaussian processes for source separation. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1909–1912, 2008. [82] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. [83] R.J. Adler and J.E. Taylor. Random fields and geometry, volume 115. Springer Verlag, 2007. [84] Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2):127–190, 1999. [85] Reuven Y Rubinstein and Dirk P Kroese. Combinatorial optimization via cross-entropy. In The Cross-Entropy Method, pages 129–186. Springer, 2004. [86] Reuven Y Rubinstein. Combinatorial optimization, cross-entropy, ants and rare events. Stochastic optimization: algorithms and applications, 54:303–363, 2001. [87] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. Atutorial on the cross-entropy method. Annals of Operations Research, 134(1):19–67, Feb 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49085 | - |
| dc.description.abstract | 中文摘要
下世代網路 (例如:5G 網路) 正逐漸面臨一種需求,即需具備處理巨量資料能力與能源問題。巨量資料與能源問題在物聯網中極為重要。本博士論文包含兩則子研究內容,提供協助解決巨量資料與能源問題。當考量巨量資料與能源問題的可行性時,我們可將它具體化成兩個子研究內容,亦即內容情境估測和能量感知能力。首先我們專注的第一個子研究是內容情境的估測,而第二個則是具能量感知能力的網路最佳化。我們以目前較成熟的網路去模擬提議的解決方案架構,例如 IEEE 802.11 網路和無線感測網路 (wireless sensor network)。因為這些網路在網路演進到物聯網的過程中扮演著最重要的角色。 在第一個研究中,我們提出一個粒子過濾架構,用以實現立即性的動態估測。這估測使用在 IEEE 802.11 網路中無線終端機 (station) 的未飽和緩衝儲存器 (unsaturated buffer) 裏。採用本架構,存取點基地台 (access point) 可以對其下服務的無線終端機,動態地調整傳輸流量與組態相關的參數。所以增進了網路系統的資料傳輸率,也降低了封包的遞送延遲。目前在 IEEE 802.11 網路中分析未飽和條件的研究都是基於一種穩態模型 (steady-state model),而我們提議的方法則是致力於對無線終端機的未飽和緩衝儲存器的機率分佈去做動態估測。這方法可用於同質或異質網路。本研究也採用了從貝氏推論 (Bayesian Inference) 一路到粒子過濾演算法 (particle-filtering algorithm) 的理論支持。用均方根誤差 (Root Mean Square Error) 和時間複雜度 (time complexity) 來評量估測的精確度和效力。此外,在分析時,也考慮了不同的網路負載和收斂速度。當跟其他傳統靜態流量模型去做比較分析時,我們提議的動態估測方法在各式無線網路中,對資料流量的變化展現出相當好的即時察覺能力。 另一方面,我們也發展一套新的統計性決策架構。在無線感測網路中含多個無線感測器的集合,它可以挑選出較佳的感測器子集合後,再啟動它們。而且是在滿足使用者指定的各種服務品質 (Quality of Service (QoS)) 標準下挑選出。感測器節點的用電完全由周遭環境以能量擷取 (energy harvesting) 方式供電。感測器節點依據可用的電池能量以有效又經濟的方被啟動。只是電池能量的多寡無法被決策器直接觀察取得。我們的決策架構包含兩方面:第一是每一個感測器目前可用電池能量的估測;第二是感應器選擇策略。能量估測的步驟是依據累積的能量擷取程序 (Cumulative Energy Harvesting Process),將其實現於合作型感測網路上 (collaborative wireless sensor networks)。感應器選擇策略依據上述估測的電池能量,採用交叉熵 (Cross-Entropy) 方法實踐。交叉熵方法有效地解決某些問題造成的組合問題 (combinatorial problem),選擇出具有較長能量壽命的感應器集合。本研究的結果讓網路具有較長的能量壽命,以順應未來巨大資料網路的需求。我們也研究各種參數的效應,深入地洞悉我們提議的架構在不同條件下操作,依然堅實有效。 | zh_TW |
| dc.description.abstract | Abstract
Next generation network (e.g., 5G networks) are increasingly confronted with demands to deal with the huge data and energy problems. Huge data and energy problems are of vital importance in the Internet of Things (IoT) network. This dissertation includes two sub-works which could lend supports to the solutions to huge data and energy problems. As coming down to the feasibilities of the huge data and energy problems, we may substantiate them to the two sub-works which are context estimation and energy-aware. The first sub-work we bend our mind to is the context estimation, whereas the second one is the network optimization with the ability of the energy-aware. We simulate our proposed frameworks on the current mature networks, say, IEEE 802.11 DCF network and wireless sensor network, due to these two networks have been playing the most important roles on the wireless network evolution process toward the IoT. In the first work, we proposes a particle filter framework to perform an online estimation of the unsaturated buffers of the stations in the IEEE 802.11 DCF network. Using this framework, an access point can adapt flow control to its serving stations and configure related parameters dynamically, thus improving the system throughput and reducing the packet latency. Current research analyzing the unsaturated condition in the IEEE 802.11 DCF network is based on the steady-state model, whereas this proposed method is devoted to the dynamic estimation for the probability distribution of the unsaturated buffer in the stations, in either homogeneous or heterogeneous networks. This study also employs theoretical support from the Bayesian Inference to the particle-filtering algorithm. The estimation accuracy and effectiveness were evaluated via Root Mean Square Error and time complexity. Furthermore, we considered different network loads and the convergence speeds in our analysis. Our analysis demonstrated that the dynamic estimation scheme we are proposing has a greater awareness of the traffic changes in the varying wireless networks, when compared to the traditional static traffic model. On the other hand, we also develop a new statistical decision making framework to select the optimal subset of wireless sensors to activate sensors, while meeting various Quality of Service (QoS) criteria specified by users queries. The sensor nodes are powered solely by energy harvested from the environment and should be activated in an efficient and economical manner based on the available battery energy, which may not be directly observed by the decision maker. Our decision making framework consists of two aspects: the first is the estimation of the current available battery levels of each of the sensors; and the second is a sensor selection policy. The energy estimation step is based on the Cumulative Energy Harvesting Process which is carried out over the collaborative wireless sensor networks. The sensor selection policy is based on the estimated battery levels and uses the Cross-Entropy method which efficiently solves the resulting combinatorial problem to select the sensor set with the long lifetime. This work exhibits the long lifetime of the network for accommodating the large data network in the future. We also investigate the effect of various parameters, which provides insights into the robustness and effectiveness of our framework under different operational conditions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:15:35Z (GMT). No. of bitstreams: 1 ntu-105-D96921030-1.pdf: 3224831 bytes, checksum: f82418820ccc5b70d9c84b0935ad3a0c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
致謝 i Acknowledgments iii 中文摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Context Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Energy-aware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 A Dynamic Estimation of the Unsaturated Buffer in the IEEE 802.11 DCF Network: a Particle Filter Framework Approach . . . 6 1.2.2 Query-based Sensors Activation for Collaborative Wireless Sensor Networks with Stochastic Energy Harvesting . . . . . . . . . 7 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 A Dynamic Estimation of the Unsaturated Buffer in the IEEE 802.11 DCF Network: a Particle Filter Framework Approach 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Related Works and Motivations . . . . . . . . . . . . . . . . . . . . 14 2.3 Fundamentals of Particle Filters . . . . . . . . . . . . . . . . . . . 17 2.3.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Scenarios and System Models . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 Wireless Network Scenario . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Particle-Filtering Algorithm . . . . . . . . . . . . . . . . . . . . . 24 2.5.1 Selection of the Importance Function . . . . . . . . . . . . . . . . 24 2.5.2 Design of the Update Function . . . . . . . . . . . . . . . . . . . 25 2.5.3 Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.1 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.2 Root Mean Square Error and Time Complexity Analysis . . . . . . . . 33 2.6.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.4 Estimation under Different Network Loads . . . . . . . . . . . . . . 38 2.6.5 Convergence Speed Evaluation . . . . . . . . . . . . . . . . . . . . 39 2.6.6 Heterogeneous Network . . . . . . . . . . . . . . . . . . . . . . . 41 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Query-based Sensors Activation for Collaborative Wireless Sensor Networks with Stochastic Energy Harvesting 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.1 Problem of Effective Energy Utilization in WSNs . . . . . . . . . . 46 3.1.2 A solution via Collaborative Wireless Sensor Network . . . . . . . . 47 3.1.3 Design Criteria of the Proposed Framework . . . . . . . . . . . . . 48 3.1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Formal Definitions and Theoretical Background . . . . . . . . . . . . 50 3.2.1 Modelling the spatio-temporal physical phenomena . . . . . . . . . . 51 3.2.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . 51 3.2.3 Energy Harvesting and Battery Level Stochastic Processes . . . . . . 52 3.2.4 Special case: CEHP analytic expressions under separable and squared exponential kernels . . . . . . 56 3.2.5 Illustration of the online sensor selection problem . . . . . . . . 59 3.3 Primary and secondary networks models . . . . . . . . . . . . . . . . 60 3.3.1 Network 1: the environmental monitoring sensor network . . . . . . . 61 3.3.2 Network 2: the secondary network for ambient energy monitoring 62 3.4 Query-based Sensors Selection: Objective Function and Algorithm . . . 63 3.4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.2 Battery Level Estimation . . . . . . . . . . . . . . . . . . . . . . 64 3.4.3 Sensor Set Selection via Cross-Entropy Method . . . . . . . . . . . 69 3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.1 Simulation set-up . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.2 Simulations of Cumulative Energy Harvested Process (CEHP) . . . . . 71 3.5.3 Sensor Selection Performance Characterization . . . . . . . . . . . 73 3.5.4 System Lifetime Performance . . . . . . . . . . . . . . . . . . . . 74 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Conclusion 89 A Publication List 91 Bibliography 93 | |
| dc.language.iso | en | |
| dc.subject | 交叉熵 | zh_TW |
| dc.subject | 能量擷取 | zh_TW |
| dc.subject | 高斯隨機程序 | zh_TW |
| dc.subject | 合作型感測網路 | zh_TW |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | 非飽和資料暫存器 | zh_TW |
| dc.subject | 估測 | zh_TW |
| dc.subject | 粒子濾波器 | zh_TW |
| dc.subject | 馬可夫鍊蒙地卡羅 | zh_TW |
| dc.subject | 貝式推論 | zh_TW |
| dc.subject | 802.11標準分散式協調功能 | zh_TW |
| dc.subject | unsaturated buffer | en |
| dc.subject | Bayesian inference | en |
| dc.subject | IEEE 802.11 distributed coordination function (DCF) | en |
| dc.subject | Markov Chain Monte Carlo (MCMC) | en |
| dc.subject | particle filter | en |
| dc.subject | estimation | en |
| dc.subject | Internet of Things (IoT) | en |
| dc.subject | collaborative wireless sensor networks | en |
| dc.subject | Gaussian process | en |
| dc.subject | Cross-Entropy method | en |
| dc.title | 物聯網中基於能量感知之網路情境內容估測 | zh_TW |
| dc.title | Energy-aware Context Estimation for IoT Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李育杰(Yuh-Jye Lee),謝宏昀(Hung-Yun Hsieh),李佳翰(Chia-Han Lee),蘇柏青(Borching Su),簡鳳村(Feng-Tsun Chien) | |
| dc.subject.keyword | 貝式推論,802.11標準分散式協調功能,馬可夫鍊蒙地卡羅,粒子濾波器,估測,非飽和資料暫存器,物聯網,合作型感測網路,高斯隨機程序,能量擷取,交叉熵, | zh_TW |
| dc.subject.keyword | Bayesian inference,IEEE 802.11 distributed coordination function (DCF),Markov Chain Monte Carlo (MCMC),particle filter,estimation,unsaturated buffer,Internet of Things (IoT),collaborative wireless sensor networks,Gaussian process,Cross-Entropy method, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU201603022 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
