請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49073完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-Hsiu Chao) | |
| dc.contributor.author | Kai-Jing Fu | en |
| dc.contributor.author | 傅凱靖 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:15:15Z | - |
| dc.date.available | 2017-08-25 | |
| dc.date.copyright | 2016-08-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | 1. Murray, M.M., et al., The Effect of Skeletal Maturity on Functional Healing of
the Anterior Cruciate Ligament. The Journal of Bone and Joint Surgery. American volume., 2010. 92(11): p. 2039-2049. 2. Amiel, D., E. Billings, Jr., and F.L. Harwood, Collagenase activity in anterior cruciate ligament: protective role of the synovial sheath. J Appl Physiol (1985), 1990. 69(3): p. 902-6. 3. Grace Chao, P.H., H.Y. Hsu, and H.Y. Tseng, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. 4. Chow, K.H., R.E. Factor, and K.S. Ullman, The nuclear envelope environment and its cancer connections. Nat Rev Cancer, 2012. 12(3): p. 196-209. 5. Denais, C.M., et al., Nuclear envelope rupture and repair during cancer cell migration. Science, 2016. 352(6283): p. 353-358. 6. Sarma, K. and D. Reinberg, Histone variants meet their match. Nat Rev Mol Cell Biol, 2005. 6(2): p. 139-149. 7. Dahl, K.N. and A. Kalinowski, Nucleoskeleton mechanics at a glance. Journal of Cell Science, 2011. 124(5): p. 675-678. 8. Gerlich, D. and J. Ellenberg, 4D imaging to assay complex dynamics in live specimens. Nat Cell Biol, 2003. Suppl: p. S14-9. 9. Li, Y., et al., Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading. Biophysical Journal, 2015. 109(4): p. 670-686. 10. Luke, Y., et al., Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. Journal of Cell Science, 2008. 121(11): p. 1887-1898. 11. Kaunas, R., et al., Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15895-900. 12. McBeath, R., et al., Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Developmental Cell, 2004. 6(4): p. 483-495. 13. Chen, C.S., et al., Geometric Control of Cell Life and Death. Science, 1997. 276(5317): p. 1425-1428. 14. Maniotis, A.J., C.S. Chen, and D.E. Ingber, Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(3): p. 849-854. 15. Alam, S.G., et al., The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts. Journal of Cell Science, 2015. 128(10): p. 1901-1911. 16. Versaevel, M., T. Grevesse, and S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun, 2012. 3: p. 671. 17. Khatau, S.B., et al., A perinuclear actin cap regulates nuclear shape. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(45): p. 19017-19022. 18. Buxboim, A., et al., Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol, 2014. 24(16): p. 1909-17. 19. Guilak, F., J.R. Tedrow, and R. Burgkart, Viscoelastic Properties of the Cell Nucleus. Biochemical and Biophysical Research Communications, 2000. 269(3): p. 781-786. 20. Farina, F., et al., The centrosome is an actin-organizing centre. Nat Cell Biol, 2016. 18(1): p. 65-75. 21. Makhija, E., D.S. Jokhun, and G.V. Shivashankar, Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(1): p. E32-E40. 22. Kim, D.H., et al., Volume regulation and shape bifurcation in the cell nucleus. J Cell Sci, 2016. 129(2): p. 457. 23. Dahl, K.N., A.J.S. Ribeiro, and J. Lammerding, Nuclear shape, mechanics, and mechanotransduction. Circulation research, 2008. 102(11): p. 1307-1318. 24. Mellad, J.A., D.T. Warren, and C.M. Shanahan, Nesprins LINC the nucleus and cytoskeleton. Current Opinion in Cell Biology, 2011. 23(1): p. 47-54. 25. Shen, N., et al., Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mech Chem Biosyst, 2005. 2(1): p. 17-25. 26. Nagayama, K., Y. Yahiro, and T. Matsumoto, Apical and Basal Stress Fibers have Different Roles in Mechanical Regulation of the Nucleus in Smooth Muscle Cells Cultured on a Substrate. Cellular and Molecular Bioengineering, 2013. 6(4): p. 473-481. 27. Yang, C., et al., Mechanical memory and dosing influence stem cell fate. Nat Mater, 2014. 13(6): p. 645-652. 28. Heo, S.-J., et al., Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells. Scientific Reports, 2015. 5: p. 16895. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49073 | - |
| dc.description.abstract | 人體中許多組織具有平行波浪狀結構的膠原蛋白纖維,這種結構中的細胞以及細胞核也具有波浪狀的型態,我們之前的研究發現波浪結構可控制細胞的基因表現,且前人研究也指出細胞核型態可調控基因表現。然而目前還未瞭解控制細胞核形狀的機制。為探討不同曲率如何影響細胞與細胞核,我們利用微壓印(micro-contact printing)製作直線及不同彎度的PDMS 基質並種上間質幹細胞。細胞與細胞核的確會隨著各式結構生長,我們並進一步推論細胞型態是經由細胞骨架調控細胞核型態。細胞骨架的抑制結果顯示失去肌動蛋白將使細胞核曲率提升,而不同位置的肌動蛋白次結構將導致細胞核有不同的形變。在肌動蛋白的抑制過程中,肌動蛋白團(actin cluster)一旦發生,將導致細胞核被壓迫彎曲,而細胞核的可塑性質會記憶這個彎曲。細胞貼附基質時,肌動蛋白骨架將隨細胞型態形成並改變細胞核型態,因此細胞核的形狀與肌動蛋白有關。未來將調查肌動蛋白次結構與LINC對細胞核形變與細胞行為表現。 | zh_TW |
| dc.description.abstract | Many tissues are composed of aligned collagen fibers in the body, the cell and nucleus in this structure exhibit wavy morphology. Our study, along with previous studies, show that wavy structures control cell gene expression and nuclear morphology may regulate gene expression. To investigate how wavy structure affect cell and nucleus, we used micro-contact printing to fabricate PDMS microgroove substrates with straight and wavy structures and then seeded human mesenchymal stem cells (MSCs) on the patterns. Cells and nuclei conformed to different pattern shapes, we further infer that nuclear morphology is regulated by cell cytoskeleton. The results of cytoskeleton inhibition show that without actin fibers the nuclear curvature increased, and actin substructures could lead to different nuclear deformation. Actin inhibition or disruption generates actin fragments, termed actin clusters here, which deforms the malleable nucleus. During cell adhesion and spreading, the developing actin cytoskeleton would control nucleus depending on cell morphology. These results indicate the actin controls nuclear morphology. Future study would be exploring contributions to nuclear deformation and cell phenotype by actin substructures and LINC complex. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:15:15Z (GMT). No. of bitstreams: 1 ntu-105-R03548046-1.pdf: 10538214 bytes, checksum: 8612bbd717239ef52d024b6f670e8c4a (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 ........................................................................................................................... III
ABSTRACT .................................................................................................................... IV CONTENT ....................................................................................................................... V CHAPTER 1 ..................................................................................................................... 1 INTRODUCTION ............................................................................................................. 1 CHAPTER 2 ..................................................................................................................... 3 MATERIAL AND METHOD ............................................................................................ 3 2.1 MICROFABRICATION .................................................................................................. 3 2.2 CELL CULTURE, PLASMIDS AND TRANSFECTION ....................................................... 4 2.3 CYTOSKELETON INHIBITOR TREATMENT ................................................................... 5 2.4 IMMUNOFLUORESCENCE MICROSCOPY ..................................................................... 5 2.5 MICROSCOPY ............................................................................................................ 6 2.6 LASER ABLATION ...................................................................................................... 6 2.7 IMAGE AND STATISTICAL ANALYSIS .......................................................................... 7 CHAPTER 3 ..................................................................................................................... 9 RESULTS .......................................................................................................................... 9 3.1 CELL AND NUCLEAR MORPHOLOGY .......................................................................... 9 3.2 CELL AND NUCLEAR MORPHOLOGY AFTER INHIBITORS TREATMENT ....................... 9 3.3 NUCLEI ARE WAVY FOR CELLS IN SUSPENSION ....................................................... 11 3.4 NUCLEUS BECOME WAVY AT HIGH BLEBBISTATIN CONCENTRATIONS ..................... 12 CHAPTER 4 ................................................................................................................... 13 DISCUSSION .................................................................................................................. 13 REFERENCE ................................................................................................................. 30 | |
| dc.language.iso | en | |
| dc.subject | 韌帶細胞 | zh_TW |
| dc.subject | 肌動蛋白次結構 | zh_TW |
| dc.subject | 肌動蛋白 | zh_TW |
| dc.subject | 細胞核形變 | zh_TW |
| dc.subject | ligament fibroblast | en |
| dc.subject | actin substructures | en |
| dc.subject | actin | en |
| dc.subject | nuclear deformation | en |
| dc.title | 波浪狀細胞藉肌動蛋白結構調控細胞核型態 | zh_TW |
| dc.title | Wavy Cells Control Nuclear Morphology through Actin Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡(Po-Ling Kuo),游佳欣(Jia-Shing Yu) | |
| dc.subject.keyword | 韌帶細胞,細胞核形變,肌動蛋白,肌動蛋白次結構, | zh_TW |
| dc.subject.keyword | ligament fibroblast,nuclear deformation,actin,actin substructures, | en |
| dc.relation.page | 31 | |
| dc.identifier.doi | 10.6342/NTU201603444 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 10.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
