請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49071完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘國隆 | |
| dc.contributor.author | Hong-Yi Wu | en |
| dc.contributor.author | 吳泓毅 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:15:12Z | - |
| dc.date.available | 2021-10-26 | |
| dc.date.copyright | 2016-10-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | [1] J. Bao, L. Zhao. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325-342.
[2] D. Wang, X. Ling, H. Peng, L. Liu and L. Tao. (2013). Efficiency and optimal performance evaluation of organic Rankine cycle for lowgrade waste heat power generation. Energy, 50, 343–352. [3] R. H. Aungier. (2006). Turbine aerodynamics: axial-flow and radial-inflow turbine design and analysis. The American Society of Mechanical Engineers Press, New York.. [4] J. Hoffren, T. Talonpoika, J. Larjola, T. Siikonen. (2002). Numerical simulation of real-gas flow in a supersonic turbine nozzle ring. Journal of Engineering for Gas Turbines and Power, 124(2), 395-403. [5] P. Colonna, S. Rebay, J. Harinck, A. Guardone. (2006). Real-gas effects in ORC turbine flow simulations: influence of thermodynamic models on flow fields and performance parameters. In: European conference on computational fluid dynamics – ECCOMAS CFD 2006. [6] J. Harinck, D. Pasquale, R. Pecnik, J. van Buijtenen and P. Colonna. (2013). Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(6), 637-645. [7] E. Sauret and Y. Gu. (2014). Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine. Applied Energy, 135, 202-211. [8] R. DiPippo. (2012). Geothermal power plants: principles, applications, case studies and environmental impact. Third edition. [9] U. Serpen and N. Turkmen. (2005). Reassessment of Kizildere geothermal power plant after 20 years of exploitation. World Geothermal Congress 2005. [10] H. Moon and S. J. Zarrouk. (2012). Efficiency of geothermal power plants: a worldwide review. New Zealand Geothermal Workshop 2012. [11] P. Moya, F. Nietzen, S. Castro and W. Taylor. (2011). Behavior of the geothermal reservoir at the Miravalles geothermal field during 1994-2010. Thirty-Sixth Workshop on Geothermal Reservoir Engineering 2011. [12] G. Thorolfsson. (2005). Sudurnes regional heating corporation Svartesngi, Iceland. GHC Bulletin 2005. [13] S. J. Zarrouk and H. Moon. (2014). Efficiency of geothermal power plants: A worldwide review. Geothermics, 51, 142-153. [14] G. Pernecker and S. Uhlig. (2002). Low-enthalpy power generation with ORC-turbogenerator the Altheim project, upper Austria. GHC Bulletin 2002. [15] Turboden. (2015). http://www.turboden.eu/. [16] Fuji Electric Global. (2015). http://www.fujielectric.com/. [17] A. Whitfield, N.C. Baines. (1990). Design of radial turbomachines. Longman Scientific and Technical. [18] D. Fiaschi, G. Manfrida, F. Maraschiello. (2015). Design and performance prediction of radial ORC turboexpanders. Applied Energy, 138, 517-532. [19] S. Shah, G. Chaudhri, D. Kulshreshtha, S. A. Channiwala. (2013). Effect of flow coefficient and loading coefficient on the radial inflow turbine impeller geometry. International Journal of Research in Engineering and Technology, 02, 98-104. [20] H. Moustapha, M.F. Zelesky, N.C. Baines and D. Japikse. (2003). Axial and Radial Turbines. Concepts NREC. [21] C. A. Wasserbauer and A. J. Glassman. (1975). Fortran program for predicting the off-design performance of radial inflow turbines. NASA TN-8063. [22] C.A.M. Ventura, P.A. Jacobs, A.S. Rowlands, P. Petrie-Repar, E. Sauret. (2012). Preliminary design and performance estimation of radial inflow turbines: an automated approach. Journal of Fluids Engineering, 134, 031102. [23] W.A. Spraker. (1987). Contour clearance losses in radial inflow turbines for turbocharges. ASME Paper No 87-ICE-52. [24] R. Dambach, H.P. Hodson and I. Huntsman. (1998). An experimental study of tip clearance flow in radial inflow turbine. ASME Paper No.98-GT-467. [25] J.W. Daily and R.E. Nece. (1960). Chamber dimension effects on induced flow and frictional resistance of enclosed rotating discs. Journal Basic Engineering, 82, 217-232. [26] S.K. Ghosh, R.K. Sahoo and S.K. Sarangi. (2011). Mathematical analysis for off-design performance of cryogenic turboexpander. Journal of Fluids Engineering, 133, 031001. [27] J.F. Suhrmann, D. Peitsch, M. Gugan, T. Heuer and U. Tomm. (2010). Validation and development of loss models for small size radial turbines. Turbo Expo 2010: Paper No. GT2010-22666. [28] L. Pan and H. Wang. (2013). Improved analysis of organic Rankine cycle based on radial flow turbine. Applied Thermal Engineering, 61, 606-615. [29] A. C. Jones. (1996). Design and test of a small, high pressure ratio radial turbine. J. Turbomach, 118(2), 362–370. [30] D. Hu, S. Li, Y. Zheng, J. Wang and Y. Dai. (2015). Preliminary design and off-design performance analysis of an organic Rankine cycle for geothermal sources. Energy Conversion and Management, 96, 175–187. [31] K. Rahbar, S. Mahmoud, R.K. Al-Dadah and N. Moazami. (2015). Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine. Energy Conversion and Management, 91, 186–198. [32] A. Perdichizzi and G. Lozza. (1987). Design criteria and efficiency for radial inflow turbines. Gas Turbine Conference and Exhibition, Anaheim CA, USA. [33] CFTurbo 10.0 user guide. [34] ANSYS 16.1 CFX-solver theory guide. [35] A. Hadidi, M. Hadidi and A. Nazari. (2013). A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Conversion and Management, 67, 66–74. [36] SA Klein. (2013). Engineering equation solver. Middleton, WI: F-chart Software. [37] D-Y Peng, D.B. Robinson. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64. [38] L. Hays. (2010). Demonstration of a variable phase turbine power system for low temperature geothermal resources. Geothermal Technologies Program 2010, U.S. Department of Energy. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49071 | - |
| dc.description.abstract | 地熱發電對位於環太平洋火山帶的台灣而言,是相當有潛力能發展的一項再生能源,故本論文根據宜蘭地區的地熱條件進行對向心式渦輪機之設計與模擬,其中假設渦輪機當中流體的質量流率與進出口熱力條件,並於文獻回顧後選擇R134a高密度流體為工作流體。為了建立渦輪機的尺寸和提高渦輪機效率,此篇論文運用mean-line approach design並透過engineering equation solver (EES)進行初步設計並配合基因演算法進行最佳化,接著使用商用軟體CFTurbo建立渦輪機的模型,最後使用商用軟體ANSYS CFX進行3D模擬分析並與初步設計結果進行比較。
本論文探討經由初步設計後得出的渦輪機尺寸,並且透過改變葉形結構和渦輪機參數觀察其對渦輪機性能的影響,因而發現在相同初步設計結果下隨著葉形結構的不同渦輪機所輸出的功率也有所不同;然而當葉片通道中有迴流產生時,改變葉形結構無法完全消除迴流狀況,而透過提升比速度(specific velocity)能改善葉片通道中的迴流情形,再加上最佳葉形結構的定義進而提升渦輪機的功率達3.5 %。 | zh_TW |
| dc.description.abstract | We present a numerical model of a turbine from a geothermal resource. According to the geographic condition in Yilan, the radial-inflow turbine is more suitable for our simulation. In order to know the performance of the radical-inflow turbine in refrigerant, we choose R134a, which is high density fluid and would have better efficiency of turbine in geothermal resources of low temperatures (below 100 oC). A method namely mean-line approach design is used to create the optimal geometry of the turbine by engineering equation solver (EES). Furthermore, we employ the commercial software (ANSYS CFX) to simulate the model and compare the result with the model from the mean-line approach.
In present work, we create simulation model which was calculated by preliminary design, then we change the shape of rotor blade and turbine coefficients in order to understanding its effect. It would change the power of turbine by changing the shape of rotor blade. However when there is separation flow in the rotor passage, it seems no effect on changing the shape of rotor blade. When increasing specific velocity, it has great effect on making separation flow disappear. Therefore, it results in increasing 3.5 % power of turbine by defining the optimal specific velocity and optimal blade shape. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:15:12Z (GMT). No. of bitstreams: 1 ntu-105-R03522319-1.pdf: 7702305 bytes, checksum: 039490cea3a89a8577e20cebe30d46dc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 表目錄 viii 圖目錄 ix 符號表 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 1 1.4 文獻回顧 2 1.4.1 有機朗肯循環(Organic Rankine Cycle, ORC)流體 2 1.4.2 向心式渦輪機設計與模擬 5 第二章 研究系統與原理介紹 6 2.1 地熱電廠的種類與實際案例 6 2.1.1 閃發式系統(Single-flash or Multi-flash System) 6 2.1.2 雙循環式系統(Binary System) 10 2.2 ORC流體選擇 13 2.3 蒸發器種類 13 2.4 渦輪機結構與理論介紹 14 2.4.1 軸向式與向心式渦輪機 14 2.4.3 定子與轉子及站位 15 2.4.4 角度與速度三角形 17 2.4.5 渦輪機相關參數 18 第三章 研究方法 22 3.1 熱源條件 22 3.2 蒸發器之計算方法 23 3.3.1 蒸發器尺寸 23 3.3.2 蒸發器計算模型 25 3.3 渦輪機內部熱損失種類 27 3.3.1 入射損失(Incidence Loss) 27 3.3.2 通道損失(Passage Loss) 28 3.3.3 間隙損失(Clearance Loss) 29 3.3.4 流阻損失(Windage Loss) 31 3.3.5 出口損失(Exit Loss) 33 3.4 向心式渦輪機熱力和幾何分析 34 3.4.1 定子(Stator) 34 3.4.2 轉子(Rotor) 35 3.5 最佳化分析 37 3.5.1 基因演算法(Genetic Algorithms) 37 3.5.2 最佳化條件 41 3.6 模擬分析 42 3.6.1 幾何繪製 42 3.6.2 網格建立 45 3.6.3 模擬設定 47 3.7 程式與模擬驗證 50 3.7.1 程式驗證 50 3.7.2 模擬驗證 54 第四章 結果與討論 57 4.1 熱交換器之熱傳分析 57 4.2 初步設計時以單位面積輸出功率為最佳化目標 61 4.2.1 初步設計與模擬分析結果 61 4.2.2 改變葉形結構 63 4.3 初步設計時以效率為最佳化目標 76 4.3.1 初步設計與模擬分析結果 76 4.3.2 改變葉形結構 77 4.3.3 新增α4w的限制條件 89 4.3.4 改變比速率(Ns)的限制條件 93 第五章 結論 101 參考文獻 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 向心式渦輪機 | zh_TW |
| dc.subject | 有機朗肯循環 | zh_TW |
| dc.subject | 地熱發電 | zh_TW |
| dc.subject | Organic Rankine cycle | en |
| dc.subject | Radial-inflow turbine | en |
| dc.subject | Geothermal energy | en |
| dc.title | 地熱發電用向心式渦輪機之最佳化設計與模擬分析 | zh_TW |
| dc.title | Optimum Design and Simulation of Radial-inflow Turbine for Geothermal Power Generation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王興華,馬小康,施聖洋 | |
| dc.subject.keyword | 有機朗肯循環,向心式渦輪機,地熱發電, | zh_TW |
| dc.subject.keyword | Organic Rankine cycle,Radial-inflow turbine,Geothermal energy, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201602854 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
