請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49059完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫志陸(Chi-Lu Sun) | |
| dc.contributor.author | Hui Chen | en |
| dc.contributor.author | 陳卉 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:14:53Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | Abitia-Cardenas LA, Galván-Magaña F, Gutiérrez -Sánchez FJ, Rodríguez-Romero J, Aguilar-Palomino B, Moehl-Hitz A (1999) Diet of blue marlin Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fish Res 44: 95-100.
Allendrof FW, Berry O, Ryman N (2014) So long to genetic diversity, and thanks for all the fish. Mol Ecol 23(1):23-25. Alvarado Bremer JR, Mejuto J, Baker AJ (1995) Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius) populations in the Atlantic Ocean. Can J Fish Aquat Sci 52(8):1720-1732. Alvarado Bremer JR, Mejuto J, Thomas WG, Ely B (1996) Global population structure of the swordfish (Xiphias gladius) as revealed by the analysis of the mitochondrial control region. J Exp Mar Biol Ecol 44(3):206-216. Alvarado Bremer JR, Stequert B, Robertson NW, Ely B (1998) Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar Biol 132:547-557. Alvarado Bremer JR, Viñas J, Mejuto J, Ely B, Pla C (2005) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylogenet Evol 36:169–187. Anonymous (1994) Cooperative game fish tagging program annual newsletter: 1992. Southeast Fisheries Science Center, Miami, FL. Avise JC (1998) Conservation genetics in the marine realm. J Hered 89:377-382. Avise JC (2001) Phylogeography: The History and Formation of Species. Harvard University Press. Cambridge, MA, p 447. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99-105. Barber PH, Erdmann MV, Palumbi SR (2006) Comparative phylogeography of three codistributed stomatopods: Origins and timing of regional lineage diversification in the coral triangle. Evolution 60(9): 1825-1839. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective popu- lation numbers in two populations using a coalescent approach. Genetics 152:763–773. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568. Bermingham E, McCafferty SS, Martin AP (1997) “Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus.” In: Molecular systematics of fishes ed. TD Kocher and CA Stepien, 113-128. New York: Academic. Bernatchez L, Guyomard R, Bonhomme F (1992) DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout, Salmo trutta, populations. Mol Ecol 1:161-73. Birky CW, Maruyama T, Fuerst P (1983) An approach to population genetic and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103: 513–527. Block BA, Booth DT, Carey F G (1992) Depth and temperature of the blue marlin, Makaira nigricans, observed by acoustic telemetry. Mar Biol 114: 175-183. Bowen BW, Muss A, Rocha LA, Grant WS (2006) Shallow mtDNA Coalescence in Atlantic Pygmy Angelfishes (Genus Centropyge) Indicates a Recent Invasion from the Indian Ocean. J Hered 97(1): 1–12. Brock RE (1984) A contribution to the trophic biology of the blue marlin (Makaira nigricans Lacèpede, 1802) in Hawaii. Pacific Sci 38: 141-149. Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76(4):1967-1971. Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10(5):1179-1196. Buonaccorsi VP, Reece KS, Morgan LW, Graves JE (1999) Geographic distribution of molecular variance within the blue marlin (Makaira nigricans): A hierarchical analysis of allozyme, single-copy nuclear DNA, and mitochondrial DNA markers. Evolution 53(2):568-579. Carlsson J, McDowell JR, Díaz-Jaimes P, Carlsson JE, Boles SB, Gold JR, Graves JE (2004) Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus) population structure in the Mediterranean Sea. Mol Ecol 13:3345-3356. Chien A, Kirby R, Sheen SS (2016) The relevance of mitochondrial lineages of Taiwanese cultured grey mullet, Mugil cephalus, to commercial products of Roe. Aquac Res 47:2455-2460. Chou CE, Liao TY, Chang HW, Chang SK (2015) Population structure of Hirundichthys oxycephalus in the northwestern Pacific inferred from mitochondrial cytochrome oxidase I gene. Zool Stud 54:19. Chow S, Okamoto H, Miyabe N, Hiramatsu K, Barut N (2000) Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol Ecol 9:221-227. Chow S, Ushiama H (1995) Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar Biol 123:39-45. Collette BB, Carpenter KE, Polidoro BA, Juan-Jorda, MJ, Boustany A, Die DJ, Elfes C, Fox W, Graves J, Harrison L, McManus R, Minte-Vera C, Nelson R, Restrepo V, Schratwieser J, Sun C L, Brick Peres M, Canales C, Cardenas G., Chang SK, Chiang WC, de Oliveira Leite N, Harwell H, Lessa R, Fredou FL, Oxenford HA, Serra R, Shao KT, Sumalia R, Wang SP, Watson R, and Yanez E (2011) High value and long life—Double jeopardy for tuna and billfishes. Science 333:291-292. Collette BB., McDowell JR, Graves JE (2006) Phylogeny of recent billfishes (Xiphioidei). Bull Mar Sci 79(3): 455-468. Collette BB, Nauen CE (1983) Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fish Syn Vol. 2 137 pp. Consuegra S, Elgan J, Eric V, de Leaniz CG (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 47:58. Dammannagoda ST, Hurwood DA, Mather PB (2008) Evidence for fine geographical scale heterogeneity in gene frequencies in yellowfin tuna (Thunnus albacares) from the north Indian Ocean around Sri Lanka. Fish Res 90(1–3):147–157. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. Díaz-Jaimes P, Uribe-Alcocer M, Ortega-García S, Durand JD (2006) Spatial and temporal mitochondrial DNA genetic homogeneity of dolphinfish populations (Coryphaena hippurus) in the eastern central Pacific. Fish Res 80(2–3):333–338. Donaldson KA, Wilson RR (1999) Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13(1):208-213. Droxler AW, Alley RB, Howard WR, Poore RZ, Burckle LH (2003) Unique and exceptionally long interglacial marine isotope stage 11: window into earth warm future climate. Geoph Monog Series 137:1–14. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7 Mol Biol Evo 29:1969-1973. Duncan KM, Martin AP, Bowen BW, De Couet HG (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571-2581. Durand JD, Shen KN, Chen WJ, Jamandre BW, Blel H, Diop K, Nirchio M, Garcia de Leon FJ, Whitfield AK, Chang CW, Borsa P (2012) Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): Molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy, Mol Phylogent Evol 64(1): 73-92. Ely B, Vi˜nas J, Alvarado-Bremer JR, Black D, Lucas L, Covello K, Labrie A,Thelen VE (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10(3):564-567. Fierstine HL (2006) Fossil history of billfishes (Xiphioidei). Bull Mar Sci 79(3): 433-453. Finnerty JR, Block BA (1992) Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Mol Mar Biol Biotechnol 1(3):206-214. Fisher RA (1925) Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915-925. Graves JE, McDowell JR (1995) Inter-ocean genetic-divergence of Istiophorid billfishes. Mar Biol 122(2):193-203. Graves JE, McDowell JR (2003) Stock structure of the world's Istiophorid billfishes: a genetic perspective. Mar Freshwater Res 54(4):287-298. Graves JE, McDowell JR (2015) Population structure of istiophorid billfishes. Fish Res 166:21-28. Hall TA (1999) BioEdit: a user- friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98. Hallerman EM (2003) Population Genetics: Principles and Applications for Fisheries Scientists. American Fisheries Society, Bethesda, MD, USA, p 475. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591-600. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907-913. Hill KT, Cailliet GM, Radtke RL (1989) A comparative analysis of growth zones in four calcified structures of Pacific blue marlin, Makaira nigricans. Fish Bull 87:829-843. Hinton MG (2001) Status of blue marlin in the Pacific Ocean. Stock Assessment Report 1, Status of tuna and billfish stocks in 1999, Inter-Am. Trop. Tuna Comm. La Jolla, California. Pp. 284-319. Holland KN, Brill RW, Chang RKC (1990) Horizontal and vertical movements of Pacific blue marlin captured and released using sportfishing gear. Fish Bull US 88: 397-402. Howard JK, Ueyanagi S (1965) Distribution and relative abundance of billfishes (Istiophoridae) of the Pacific Ocean. Univ. Miami Inst. Mar. Sci., Stud. Trop. Oceanography 2:1-134. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. ICCAT (2001) Report of the fourth ICCAT billfish workshop. International commission for the Conservation of Atlantic Tunas, Col Vol Sci Pap 53:1-22. Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard R, Kukla G, Kutzbach J, Martinson D G, McIntyre A (1992) On the structure and origin of major glaciation cycles. I. Linear responses to Milankovich forcing. Paleoceanography 7:701-738. Kailola PJ, Williams MJ, Stewart PC, Reichelt RE, McNee A, Grieve C (1993) Australian fisheries resources. Bureau of Resource Sciences, Canberra, Australia. Kingman JFC (1982a) The coalescent. Stoch Process Appl 13:235-248. Kingman JFC (1982b) On the genealogy of large populations. In Essays in Statistical Science, edited by J. Gani and E. Hannan, pp. 27-43, Applied Probability Trust, London. Kingman J FC (2000) Origins of the coalescent. 1974-1982. Genetics 156:1461-1463. Kleiber P, Hinton MG, Uozumi Y (2003) Stock assessment of blue marlin (Makaira nigricans) in the Pacific using MULTIFAN-CL. Mar Freshwater Res 54(4): 349-360. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B 265:2257-2263. Lambeck K, East TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199-206. Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc Roy Soc 273:2201–2208. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451-1452. Liu JX, Gao TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol Ecol 16(2):275-288. Liu JX, Gao TX, Zhuang ZM, Jin XS, Yokogawa K, Zhang YP (2006) Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Mol Phylognet Evol 40:712-723. López MD, Alcocer MU, Jaimes PD (2010) Phylogeography and historical demography of the Pacific Sierra mackerel (Scomberomorus sierra) in the Eastern Pacific. BMC Genetics 11:34. Lourie SA, Vincent ACJ (2004) A marine fish follows Wallace’s Line: the phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia. J Biogeogr 31(12):1975-1985. Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004) 'The Neogene Period'. In: Gradstein, F., Ogg, J., Smith, A.G. (Eds.), A Geologic Time Scale 2004. Cambridge: Cambridge University Press. Lu CP, Alvarado Bremer JR, Mckenzie JL, Chiang WC (2015) Analysis of sailfish (Istiophorus platypetrus) population structure in the North Pacific Ocean. Fish Res 166:33-38. Luckhurst BE, Prince ED, Llopiz JK, Snodgrass D, Brothers EB (2006) Evidence Of Blue Marlin (Makaira nigricans) spawning in Bermuda waters and elevated mercury levels in large specimens. Bull Mar Sci 79 (3): 691–704. Martínez P, Gonzalez EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus) Mol Phyl Evol 39: 404-416. Matsumoto WM, Kazama TK (1974) Occurrence of young billfishes in the central Pacific Ocean. In: Shomura RS, Williams F (eds) Proceedings of the International Billfish Symposium, Kailua-Kona, Hawaii, 9-12 August 1972, Pt. 2. Review and Contributed Papers. NOAA Tech. Rep. NMFS SSRF-675:239-251. McDowell JR (2002) Genetic stock structure of the sailfish, Istiophorus platypterus, based on nuclear and mitochondrial DNA. Ph.D. Dissertation, College of William and Mary: Virginia Institute of Marine Science, USA. McDowell1 JR, Carlsson JEL, Graves JE (2007) Genetic analysis of blue marlin (Makaira nigricans) stock structure in the Atlantic Ocean. Gulf Carib Res 19(2):75-82. McDowell JR, Graves JE (2008) Population structure of striped marlin (Kajikia audax) in the Pacific Ocean based on analysis of microsatellite and mitochondrial DNA. Can J Fish Aquat Sci 65:1307-1320. Molony B (2005) Summary of the biology, ecology and stock status of billfishes in the WCPFC, with a review of major variables influencing longline fishery performance. Working Paper EB-WP-2, 1st Meeting of the Scientific Committee of the Western and Central Pacific Fisheries Commission (WCPFC-SC1), 8-19 August 2005, New Caledonia, Noumea. 67 pp. Nakamura H (1944) Studies on the fishes of the family Istiophoridae from the Formosan waters. 8, Seasonal variations in size, b. White marlin. Trans Nat Hist Soc Taiwan 34(251): 293–297. Nakamura I (1985) FAO Species Catalog Vol 5. Billfishes of the world an annotated and illustrated catalog of marlins sailfishes spearfishes and swordfishes known to date. FAO (Food and Agriculture Organization of the United Nations) Fish Synop FAO/UNDP, Rome. Nishikawa Y, Honma M, Ueyanagi S, Kikawa S (1985) Average distribution of larvae of oceanic species of Scombroid fishes, 1956-1981. Far Seas Fish Res Lab S Ser 12:1-99. Ortiz M, Prince E, Serafy J, Holts D, Davy K, Pepperell J, Lowery M, Holdsworth J (2003) Global overview of the major constituent-based billfish tagging programs and their results since 1954. Mar Freshwater Res 54(4):489-507. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The Simple Fool’s Guide to PCR, version 2, Department of Zoology, University of Hawaii, Hawaii. Penrith MJ, Cram DL (1974) The Cape of Good Hope: A hidden barrier to billfishes. In: Shomura RS, Williams F (eds) Proceedings of the International Billfish Symposium, Kailua-Kona, Hawaii, 9-12 August 1972. Part 2 Reviewed and Contributed Papers. NOAA Technical Report, NMFS SSRF-675, pp 175-187 (NOAA: Seattle, WA.). Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished population. Mol Ecol 23(1):29-39. Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25:1253-1256. Prince ED, Lee DW, Zweifel JR, Brother EB (1991) Estimating age and growth of young Atlantic blue marlin Makaira nigricans from otolith microstructure. Fish Bull 89(3): 441-459. Punt AE, Su NJ, and Sun CL (2015) Assessing billfish stocks: A review of current methods and some future directions. Fish Res 166: 103-118. Quattro JM, Stoner DS, Driggers WB, Anderson CA, Priede KA, Hoppmann EC, Campbell NH, Duncan KM, Grady JM (2006) Genetic evidence for cryptic speciation within hammerhead sharks (Genus Sphyrna). Mar Biol 148:1143–1155. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer. Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227-268. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26(3):501-512. Rogers AR, Harpending H (1992) Population-growth makes waves in the distribution of pairwise genetic-differences. Mol Biol Evol 9(3):552-569. Rosel PE, Block BA (1996) Mitochondrial control region variability and global population structure in the swordfish, Xiphias gladius. Mar Biol 125:11-22. Santini F, Sorenson L (2013) First molecular timetree of billfishes (Istiophoriformes: Acanthomorpha) shows a Late Miocene radiation of marlins and allies. Ital J Zool 80(4):481-489. Schultz JK, Pyle RL, DeMartini E, Bowen BW (2007) Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus. Mar Biol 151:167-175. Scott EL, Prince ED, Goodyear CD (1990) History of the cooperative game fish tagging program in the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea 1954-1987. Am Fish Soc Symp 7:841-853. Sharp GD (1978) Behavioral and physiological properties of tunas and their effects on vulnerability to fishing gear. In: Sharp GD, Dizon AE (eds) The Physiological Ecology of Tunas. Academic Press, New York, pp 397-449. Shimose T, Shono H, Yokawa ., Saito H, Tachihara K (2006) Food and feeding habits of blue marlin, Makaira nigricans, around Yonaguni Island, Southwestern Japan. Bull Mar Sci 79: 761-775. Shimose T, Yokawa K, Saito H, Tachihara K (2007) 'Evidence for use of the bill by blue marlin, Makaira nigricans, during feeding'. Ichthyol Res 54 (4): 420–422. Sorenson L, McDowell JR, Knott T, Graves JE (2013) Assignment test method using hypervariable markers for blue marlin (Makaira nigricans) stock identification. Conserv Genet Resour 5:293-297. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. Su, N.J., Sun, C.L., Punt, A.E., Yeh, S.Z., DiNardo, G. (2012). Incorporating habitat preference into the stock assessment and management of blue marlin (Makaira nigricans) in the Pacific Ocean. Mar Freshw Res 63(7): 565–575. Sukumaran S, Sebastian W, Gopalakrishnan A (2016) Population genetic structure of Indian oil sardine, Sardinella longiceps along Indian coast. Gene 576(1):372-378. Tajima F (1989) The effect of change in population size on DNA polymorphisms. Genetics 123(3):597-601. Talbot FH, Penrith MJ (1962) Tunnies and marlins of South Africa. Nature 193:558-559. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731-2739. Theisen TC, Bowen BW, Lanier W, Baldwin JD (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae) Mol Ecol 17:4233–4247. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22(22):4673-4680. Torres-Silva CM, Travassos PE, Hazin FH, Pinheiro P (2006) Preliminary results on reproductive biology of blue marlin, Makaira nigricans (Lacepede, 1803) in the tropical western Atlantic Ocean. Col Vol Sci Pap ICCAT SCRS/2006/104. Tringali MD, Wilson RR (1993) Differences in haplotype frequencies of mtDNA of the Spanish sardine Sardinella aurita between specimens from the eastern Gulf of Mexico and southern Brazil. Fish Bull 91:362-370. Tzedakis PC, Raynaud D, McManus JF, Berger A, Brovkin V, Kiefer T (2009) Interglacial diversity. Nat Geosci 2:751–755. Vinas J, Alvarado Bremer JR, Pla C (2004) Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar Biol 145:225-232. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191-201. Ward RD, Elliott NG, Grewe PM, Smolenski AJ (1994) Allozyme and mitochondrialDNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Mar Biol 118:531-539. Wilson CA, Dean JM, Prince ED, Lee DW (1991) An examination of sexual dimorphism in Atlantic and Pacific blue marlin using body weight, sagittae weight, and age estimates. J Exp Mar Biol Ecol 151:209-225. Wright S (1978) Evolution and the Genetics of Populations: Variability Within and Among Populations (The University of Chicago Press: Chicago, IL.). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49059 | - |
| dc.description.abstract | 黑皮旗魚是一種棲息於熱帶、亞熱帶及溫帶水域的世界性魚種。儘管本種在漁業上有其重要的經濟價值,但此物種之族群結構在某些海域所知甚少,特別是在擁有最高漁獲量的太平洋及漁獲量逐年增加且面臨過漁的印度洋。在台灣本地市場可採集到粗或細鱗兩種形態特徵的黑皮旗魚。利用粒線體DNA序列長度為1140個鹼基對的細胞色素b和905個鹼基對的控制區域進行親緣關係分析(phylogenetic analysis),發現兩種不同外型的黑皮旗魚係屬於同一物種。本研究共採集183個太平洋和印度洋樣本,其中包括三個太平洋採樣區,東太平洋54個標本,西北太平洋56個標本,南中國海40個標本;一個印度洋採樣區33個標本,以粒線體DNA之控制區域分析,發現這些黑皮旗魚皆為同一個演化支(clade)-遍在演化支(ubiquitous clade)。目前太平洋和印度洋的黑皮旗魚資源分別由兩個區域性漁業管理組織(中西太平洋漁業委員會WCPFC及印度洋鮪魚委員會IOTC)來管理。本研究利用粒線體DNA中的細胞色素b和控制區域分析太平洋和東印度洋黑皮旗魚的族群結構,結果發現固定指標(ΦST)、分子變異的階層分析(AMOVA)和分子變異的空間分析(SAMOVA)皆支持黑皮旗魚在東印度洋和太平洋間無族群分化的現象,故而應屬於單一系群。所有東印度洋和太平洋黑皮旗魚皆擁有高的基因型歧異度和低的核甘酸歧異度。中性測試、分佈落差(pairwise mismatch distribution)和貝氏天際線分析(Bayesian skyline analysis)皆顯示東印度洋和太平洋黑皮旗魚在0.3至0.74百萬年前遭遇快速族群擴張。
本研究顯示太平洋和東印度洋的黑皮旗魚為單一系群,此項發現對往後該資源之評估研究提供非常重要的資訊,將有助於該黑皮旗魚資源之進一步保育管理與永續利用。 | zh_TW |
| dc.description.abstract | Blue marlin (Makaira nigricans) is a species that inhabits tropical, subtropical, and temperate waters worldwide. While blue marlin is economically important for fisheries, there are regions in this species’ distribution where little is known about its population structure. This is especially true in the Pacific Ocean, which yields the largest catch of blue marlin, and in the Indian Ocean, where catch has increased consistently over the years and the area is commonly overfished. Sampled Taiwan local market blue marlin shows two morphological characteristics of thick or thin scales. Phylogenetic analysis for taxonomy by mitochondrial DNA (mtDNA) cytochrome b (cyt b) (1140 bp) and control region (CR) (905 bp), these two morphological characteristics of the blue marlin belong to the same species. A total of 183 blue marlin was collected from three Pacific localities, eastern Pacific (EP) (n= 54), western North Pacific (WNP) (n= 56), and South China Sea (SCS) (n= 40) and one Indian Ocean locality (EI) (n= 33), analysis of mtDNA CR revealed that these are both of the ubiquitous clade. Currently blue marlin in the Pacific and Indian Oceans are managed as two distinct management units (the Western and Central Pacific Fisheries Commission [WCPFC] and the Indian Ocean Tuna Commission [IOTC]). This study investigated the genetic structure of blue marlin population inhabiting the Pacific and eastern Indian Oceans based on mtDNA cyt b and CR sequence variation. The results of pairwise ΦST, hierarchical analysis of molecular variance (AMOVA), and spatial analysis of molecular variance (SAMOVA) all support that there is no population differentiation among eastern Indian and Pacific blue marlin, thereby the population are comprised of a single stock. All eastern Indian and Pacific blue marlin possess high haplotype diversity (h) and low nucleotide diversity (π). Neutrality tests, pairwise mismatch distribution, and Bayesian skyline analysis all indicate that eastern Indian and Pacific blue marlin have undergone a rapid population expansion on the order of 0.30 to 0.74 million years ago. This study demonstrates that blue marlin in the Pacific and eastern Indian Oceans constitute a single genetic stock, which provides very important information for stock assessment purpose and for further conservation and sustainable utilization of this resource. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:14:53Z (GMT). No. of bitstreams: 1 ntu-105-D95241004-1.pdf: 2122812 bytes, checksum: ec60521add6086b48fb2b36ac9cfe3f5 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ⅰ 謝辭. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ⅱ 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⅲ Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ⅳ Chapter 1- Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Chapter 2- Phylogenetic analysis of blue marlin . . . . . . . . . . . . . . . . . . . . 7 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1. Phylogenetic analysis for taxonomy . . . . . . . . . . . . . . . .11 2.2.2. Phylogenetic analysis of Indian and Pacific blue marlin. 14 2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1. Phylogenetic analysis for taxonomy . . . . . . . . . . . . . . 16 2.3.2. Phylogenetic analysis of Indian and Pacific blue marlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1. Phylogenetic analysis for taxonomy . . . . . . . . . . . . . . 18 2.4.2. Phylogenetic analysis of Indian and Pacific blue marlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 3- Population structure of blue marlin in the Pacific and Indian oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2. Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1. Sample collection and storage . . . . . . . . . . . . . . . . . . . 26 3.2.2. Population genetic variation. . . . . . . . . . . . . . . . . . . . . .26 3.2.3. Likelihood estimates of migration . . . . . . . . . . . . . . . . 27 3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 4- Demographic history of blue marlin in the Pacific and Indian oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2. Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1. Sequences alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2. Genetic diversity analyses . . . . . . . . . . . . . . . . . . . . . . 35 4.2.3. Coalescence of blue marlin in the Pacific and Indian Oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 5- Conclusion and recommendations . . . . . . . . . . . . . . . . . . . . 43 5.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 | |
| dc.language.iso | en | |
| dc.subject | 族群變動史 | zh_TW |
| dc.subject | 黑皮旗魚 | zh_TW |
| dc.subject | 細胞色素b | zh_TW |
| dc.subject | 控制區域 | zh_TW |
| dc.subject | 族群遺傳 | zh_TW |
| dc.subject | Demographic history | en |
| dc.subject | Blue marlin | en |
| dc.subject | Cytochrome b | en |
| dc.subject | Control region | en |
| dc.subject | Population genetics | en |
| dc.title | 黑皮旗魚在太平洋及東印度洋之族群遺傳結構和族群變動史 | zh_TW |
| dc.title | Population genetic structure and demographic history of blue marlin, Makaira nigricans, in the Pacific and eastern Indian oceans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 邵廣昭(Kwang-Tsao Shao) | |
| dc.contributor.oralexamcommittee | 吳金洌(Jen-Leih Wu),葉顯椏(Shean-Ya Yeh),丘臺生(Tai-Sheng Chiu),陳韋仁(Wei-Jen Chen),劉光明(Kwang-Ming Liu) | |
| dc.subject.keyword | 黑皮旗魚,細胞色素b,控制區域,族群遺傳,族群變動史, | zh_TW |
| dc.subject.keyword | Blue marlin,Cytochrome b,Control region,Population genetics,Demographic history, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU201603449 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
