請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邢禹依(Yue-Ie C. Hsing) | |
| dc.contributor.author | Fu-Jin Wei | en |
| dc.contributor.author | 魏甫錦 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:14:36Z | - |
| dc.date.available | 2016-08-25 | |
| dc.date.copyright | 2016-08-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-20 | |
| dc.identifier.citation | Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M., Innan, H., Cano, L., Kamoun, S. and Terauchi, R. (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 30, 174-178.
Alexandrov, N., Tai, S., Wang, W., Mansueto, L., Palis, K., Fuentes, R.R., Ulat, V.J., Chebotarov, D., Zhang, G., Li, Z., Mauleon, R., Hamilton, R.S. and McNally, K.L. (2015) SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res, 43, D1023-1027. Asano, K., Yamasaki, M., Takuno, S., Miura, K., Katagiri, S., Ito, T., Doi, K., Wu, J., Ebana, K., Matsumoto, T., Innan, H., Kitano, H., Ashikari, M. and Matsuoka, M. (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci U S A, 108, 11034-11039. Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) Loss-of-function of a Rice Gibberellin Biosynthetic Gene, GA20 oxidase (GA20ox-2), Led to the Rice ‘Green Revolution’. Breed Sci, 52, 143-150. Babraham Bioinformatics (2016) FASTQC(Andrews, S. ed. Barabaschi, D., Tondelli, A., Desiderio, F., Volante, A., Vaccino, P., Vale, G. and Cattivelli, L. (2016) Next generation breeding. Plant Sci, 242, 3-13. Bonnin, I., Bonneuil, C., Goffaux, R., Montalent, P. and Goldringer, I. (2014) Explaining the decrease in the genetic diversity of wheat in France over the 20th century. Agr Ecosyst Environ, 195, 183-192. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. and Madden, T.L. (2009) BLAST+: architecture and applications. BMC bioinformatics, 10, 421. Cingolani, P., Patel, V.M., Coon, M., Nguyen, T., Land, S.J., Ruden, D.M. and Lu, X. (2012a) Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet, 3, 35. Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X. and Ruden, D.M. (2012b) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6, 80-92. Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L. and Rice, P.M. (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res, 38, 1767-1771. Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. and de Hoon, M.J.L. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422-1423. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R. and Genomes Project Analysis, G. (2011) The variant call format and VCFtools. Bioinformatics, 27, 2156-2158. de Los Reyes, B.G., Mohanty, B., Yun, S.J., Park, M.R. and Lee, D.Y. (2015) Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. Rice (N Y), 8, 14. Dievart, A., Perin, C., Hirsch, J., Bettembourg, M., Lanau, N., Artus, F., Bureau, C., Noel, N., Droc, G., Peyramard, M., Pereira, S., Courtois, B., Morel, J.B. and Guiderdoni, E. (2016) The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Sci, 242, 240-249. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M. and Yoshimura, A. (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 18, 926-936. Eisen, J.A. (2012) Badomics words and the power and peril of the ome-meme. GigaScience, 1, 1-4. Farrer, R.A., Henk, D.A., MacLean, D., Studholme, D.J. and Fisher, M.C. (2013) Using false discovery rates to benchmark SNP-callers in next-generation sequencing projects. Sci Rep, 3, 1512. Fekih, R., Takagi, H., Tamiru, M., Abe, A., Natsume, S., Yaegashi, H., Sharma, S., Sharma, S., Kanzaki, H., Matsumura, H., Saitoh, H., Mitsuoka, C., Utsushi, H., Uemura, A., Kanzaki, E., Kosugi, S., Yoshida, K., Cano, L., Kamoun, S. and Terauchi, R. (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One, 8, e68529. Fuller, C.W., Middendorf, L.R., Benner, S.A., Church, G.M., Harris, T., Huang, X., Jovanovich, S.B., Nelson, J.R., Schloss, J.A., Schwartz, D.C. and Vezenov, D.V. (2009) The challenges of sequencing by synthesis. Nat Biotechnol, 27, 1013-1023. Hedden, P. (2003) The genes of the Green Revolution. Trends Genet, 19, 5-9. Heffner, E.L., Sorrells, M.E. and Jannink, J.-L. (2009) Genomic Selection for Crop Improvement All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Crop Sci, 49, 1-12. Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res, 9, 868-877. Human Genome Sequencing, C. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931-945. International HapMap, C. (2005) A haplotype map of the human genome. Nature, 437, 1299-1320. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature, 436, 793-800. Isik, F., Bartholome, J., Farjat, A., Chancerel, E., Raffin, A., Sanchez, L., Plomion, C. and Bouffier, L. (2016) Genomic selection in maritime pine. Plant Sci, 242, 108-119. Jiang, C., Mithani, A., Gan, X., Belfield, E.J., Klingler, J.P., Zhu, J.K., Ragoussis, J., Mott, R. and Harberd, N.P. (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol, 21, 1385-1390. Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y.T., Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., Weber, R.J., Haussler, D., Kent, W.J. and University of California Santa, C. (2003) The UCSC Genome Browser Database. Nucleic Acids Res, 31, 51-54. Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., Childs, K.L., Davidson, R.M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S.S., Kim, J., Numa, H., Itoh, T., Buell, C.R. and Matsumoto, T. (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y), 6, 4. Khush, G. and Gomez, K. (1985) Parentage of IRRI crosses IR1-IR50000 Manila, Philippine: The International Rice Research Institute, Manila, Philippine. Kim, C., Guo, H., Kong, W., Chandnani, R., Shuang, L.S. and Paterson, A.H. (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci, 242, 14-22. Kim, S.Y. and Wu, R. (1990) Multiple protein factors bind to a rice glutelin promoter region. Nucleic Acids Res, 18, 6845-6852. Kovach, M.J. and McCouch, S.R. (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol, 11, 193-200. Kovach, M.J., Sweeney, M.T. and McCouch, S.R. (2007) New insights into the history of rice domestication. Trends Genet, 23, 578-587. Kumar, G.R., Sakthivel, K., Sundaram, R.M., Neeraja, C.N., Balachandran, S.M., Rani, N.S., Viraktamath, B.C. and Madhav, M.S. (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv, 28, 451-461. Lande, R. and Thompson, R. (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124, 743-756. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods, 9, 357-359. Latha, R., Rubia, L., Bennett, J. and Swaminathan, M.S. (2004) Allele mining for stress tolerance genes in Oryza species and related germplasm. Molecular biotechnology, 27, 101-108. Lee, T.H., Guo, H., Wang, X., Kim, C. and Paterson, A.H. (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC genomics, 15, 162. Leung, H., Raghavan, C., Zhou, B., Oliva, R., Choi, I.R., Lacorte, V., Jubay, M.L., Cruz, C.V., Gregorio, G., Singh, R.K., Ulat, V.J., Borja, F.N., Mauleon, R., Alexandrov, N.N., McNally, K.L. and Sackville Hamilton, R. (2015) Allele mining and enhanced genetic recombination for rice breeding. Rice (N Y), 8, 34. Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079. Li, H., Ruan, J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res, 18, 1851-1858. Liu, X., Han, S., Wang, Z., Gelernter, J. and Yang, B.Z. (2013) Variant callers for next-generation sequencing data: a comparison study. PLoS One, 8, e75619. Mather, K.A., Caicedo, A.L., Polato, N.R., Olsen, K.M., McCouch, S. and Purugganan, M.D. (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics, 177, 2223-2232. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M. and DePristo, M.A. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20, 1297-1303. McNally, K.L., Childs, K.L., Bohnert, R., Davidson, R.M., Zhao, K., Ulat, V.J., Zeller, G., Clark, R.M., Hoen, D.R., Bureau, T.E., Stokowski, R., Ballinger, D.G., Frazer, K.A., Cox, D.R., Padhukasahasram, B., Bustamante, C.D., Weigel, D., Mackill, D.J., Bruskiewich, R.M., Ratsch, G., Buell, C.R., Leung, H. and Leach, J.E. (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A, 106, 12273-12278. Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A, 88, 9828-9832. Miyao, A., Nakagome, M., Ohnuma, T., Yamagata, H., Kanamori, H., Katayose, Y., Takahashi, A., Matsumoto, T. and Hirochika, H. (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol, 53, 256-264. Monna, L., Kitazawa, N., Yoshino, R., Suzuki, J., Masuda, H., Maehara, Y., Tanji, M., Sato, M., Nasu, S. and Minobe, Y. (2002) Positional cloning of rice semidwarfing gene, sd-1: Rice 'Green revolution gene' encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 9, 11-17. Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol, 5, 737-739. Nei, M. (1987) Molecular evolutionary genetics New York: Columbia University Press. Nei, M. and Li, W.H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A, 76, 5269-5273. Ossowski, S., Schneeberger, K., Lucas-Lledo, J.I., Warthmann, N., Clark, R.M., Shaw, R.G., Weigel, D. and Lynch, M. (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327, 92-94. Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A, 85, 2444-2448. Ramirez-Gonzalez, R.H., Segovia, V., Bird, N., Fenwick, P., Holdgate, S., Berry, S., Jack, P., Caccamo, M. and Uauy, C. (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J, 13, 613-624. Reif, J.C., Zhang, P., Dreisigacker, S., Warburton, M.L., van Ginkel, M., Hoisington, D., Bohn, M. and Melchinger, A.E. (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 110, 859-864. Sabot, F., Picault, N., El-Baidouri, M., Llauro, C., Chaparro, C., Piegu, B., Roulin, A., Guiderdoni, E., Delabastide, M., McCombie, R. and Panaud, O. (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J, 66, 241-246. Saito, H., Yuan, Q., Okumoto, Y., Doi, K., Yoshimura, A., Inoue, H., Teraishi, M., Tsukiyama, T. and Tanisaka, T. (2009) Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.). Theor Appl Genet, 119, 315-323. Sakai, H., Lee, S.S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.C., Iwamoto, M., Abe, T., Yamada, Y., Muto, A., Inokuchi, H., Ikemura, T., Matsumoto, T., Sasaki, T. and Itoh, T. (2013) Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol, 54, e6. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. (2002) A mutant gibberellin-synthesis gene in rice. Nature, 416, 701-702. Sasaki, T. and Burr, B. (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol, 3, 138-141. Seplyarskiy, V.B., Kharchenko, P., Kondrashov, A.S. and Bazykin, G.A. (2012) Heterogeneity of the transition/transversion ratio in Drosophila and Hominidae genomes. Mol Biol Evol, 29, 1943-1955. Sims, D., Sudbery, I., Ilott, N.E., Heger, A. and Ponting, C.P. (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nature reviews. Genetics, 15, 121-132. Spielmeyer, W., Ellis, M.H. and Chandler, P.M. (2002) Semidwarf (sd-1), 'green revolution' rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A, 99, 9043-9048. Stein, L.D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., Nickerson, E., Stajich, J.E., Harris, T.W., Arva, A. and Lewis, S. (2002) The generic genome browser: a building block for a model organism system database. Genome Res, 12, 1599-1610. Strigens, A., Schipprack, W., Reif, J.C. and Melchinger, A.E. (2013) Unlocking the Genetic Diversity of Maize Landraces with Doubled Haploids Opens New Avenues for Breeding. PLoS One, 8. Surridge, C. (2002) Rice grains bear fruit. Nature Reviews Genetics, 3, 327-327. Takagi, H., Uemura, A., Yaegashi, H., Tamiru, M., Abe, A., Mitsuoka, C., Utsushi, H., Natsume, S., Kanzaki, H., Matsumura, H., Saitoh, H., Yoshida, K., Cano, L.M., Kamoun, S. and Terauchi, R. (2013) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. The New phytologist, 200, 276-283. The 3000 rice genomes project (2014) The 3,000 rice genomes project. GigaScience, 3, 7. Thorvaldsdottir, H., Robinson, J.T. and Mesirov, J.P. (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in bioinformatics, 14, 178-192. Tukey, J.W. (1949) Comparing individual means in the analysis of variance. Biometrics, 5, 99-114. Upadhyaya, H.D., Dwivedi, S.L., Baum, M., Varshney, R.K., Udupa, S.M., Gowda, C.L., Hoisington, D. and Singh, S. (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol, 8, 106. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K.V., Altshuler, D., Gabriel, S. and DePristo, M.A. (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.], 43, 11 10 11-33. Vikram, P., Franco, J., Burgueno-Ferreira, J., Li, H., Sehgal, D., Saint Pierre, C., Ortiz, C., Sneller, C., Tattaris, M., Guzman, C., Sansaloni, C.P., Fuentes-Davila, G., Reynolds, M., Sonders, K., Singh, P., Payne, T., Wenzl, P., Sharma, A., Bains, N.S., Singh, G.P., Crossa, J. and Singh, S. (2016) Unlocking the genetic diversity of Creole wheats. Sci Rep, 6, 23092. Voss-Fels, K. and Snowdon, R.J. (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J, 14, 1086-1094. Wei, F.J., Kuang, L.Y., Oung, H.M., Cheng, S.Y., Wu, H.P., Huang, L.T., Tseng, Y.T., Chiou, W.Y., Hsieh-Feng, V., Chung, C.H., Yu, S.M., Lee, L.Y., Gelvin, S.B. and Hsing, Y.I. (2016a) Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant J, 85, 648-659. Wei, F.J., Tsai, Y.C., Hsu, Y.M., Chen, Y.A., Huang, C.T., Wu, H.P., Huang, L.T., Lai, M.H., Kuang, L.Y., Lo, S.F., Yu, S.M., Lin, Y.R. and Hsing, Y.I. (2016b) Lack of Genotype and Phenotype Correlation in a Rice T-DNA Tagged Line Is Likely Caused by Introgression in the Seed Source. PLoS One, 11, e0155768. Wei, F.J., Tsai, Y.C., Wu, H.P., Huang, L.T., Chen, Y.C., Chen, Y.F., Wu, C.C., Tseng, Y.T. and Hsing, Y.I. (2016c) Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci, 242, 187-194. Wetterstrand, K.A. (2016) DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Wing, R.A., Ammiraju, J.S., Luo, M., Kim, H., Yu, Y., Kudrna, D., Goicoechea, J.L., Wang, W., Nelson, W., Rao, K., Brar, D., Mackill, D.J., Han, B., Soderlund, C., Stein, L., SanMiguel, P. and Jackson, S. (2005) The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol, 59, 53-62. Xu, C., Liu, Y., Li, Y., Xu, X., Xu, C., Li, X., Xiao, J. and Zhang, Q. (2015) Differential expression of GS5 regulates grain size in rice. J Exp Bot, 66, 2611-2623. Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J. and Wang, W. (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol, 30, 105-111. Yu, X. and Sun, S. (2013) Comparing a few SNP calling algorithms using low-coverage sequencing data. BMC bioinformatics, 14, 274. Zhao, K., Tung, C.W., Eizenga, G.C., Wright, M.H., Ali, M.L., Price, A.H., Norton, G.J., Islam, M.R., Reynolds, A., Mezey, J., McClung, A.M., Bustamante, C.D. and McCouch, S.R. (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2, 467. Zhao, K., Wright, M., Kimball, J., Eizenga, G., McClung, A., Kovach, M., Tyagi, W., Ali, M.L., Tung, C.W., Reynolds, A., Bustamante, C.D. and McCouch, S.R. (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One, 5, e10780 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49048 | - |
| dc.description.abstract | 基因體學基於分子生物學與遺傳學的研究成果而發展,生物資訊學因為基因體學的資訊處理需求而成長,而且因為定序技術的改良而更顯重要,但工具的選擇往往因為目的或階段性任務而有不同。稻作為人類重要糧食作物之一,也因為基因體大小,與其他作物具有高度共線性 (co-linear) 的演化關係等因素,成為被用來進行全基因體定序的第一個作物。在2005 年第一套高完成率且高品質的全基因組假染色體 (pseudomolecule) 發表之後,進入所謂的後基因體時代 (post genomic era)。研究人員有了序列、位置、結構性的註解與功能性的註解等資訊,超越了過去所用的遺傳圖譜 (genetic map),進入核苷酸為單位的實體圖譜 (physical map) 時代。生物的資訊從外表型態與周邊資訊開始累積,記錄與操作生物的基因體序列資訊,因為冗長、繁瑣、易於出錯,生物資訊的工具開始被積極地開發,然而工具的開發是基於工作流程中,某一個步驟的需要,當應用到某項工程,則需要適當的安排使用流程。本論文的目的在於,集合利用稻作基因體的生物資訊,採用不同視野及角度,以得到的不同研究成果,闡述基因體學的基礎研究成果,回歸到育種材料的可能性。全論文的生物資訊處理,主要對象為稻作基因體,而操作的資料為參試系的全基因體次世代定序資料。
在第二章,為了尋求臺灣稉稻品種臺中六十五號對光不感等位基因的突變起源 (貢獻親),本實驗室先前採用分子生物技術,將文件記載的六十個山地陸稻,縮減到剩下三個,已達該工具分析能力的極限,且關鍵的Hd1基因與插入的跳躍子都已經被定序。故藉由次世代定序的結果與生物資訊工具,從取用高可信度的單一核苷酸多型性為分子標幟,畫分屬於各參試系的單倍體基因型區域,到全基因體的整體視野為判斷依據,判定Muteka與Nakabo為最有可能的貢獻親,也就是臺中六十五號在近百年前的育種田中,受到非計畫性的花粉汙染,Hd1及Ehd1被自然地漸滲進入現在的品種之中。 在第三章,主要目的在探討膿桿菌媒介的轉殖過程中,對於稻作基因體的影響是否顯著的大於僅進行組織培養所造成的突變。透過8組不同處理的臺農67樣本,外加臺粳九號與IR64兩不同品種的五個樣本,一共31個各組不等的全基因體定序資料,結果指出膿桿菌為媒介不會造成顯著的突變,但凸顯出Taiwan Rice Insertional Mutants (TRIM)及Tos17的突變系族群,可能是因為大量產生突變系的工作流程,造成有大約10倍的突變率。 在第四章,意在藉由稻作基因體的資訊,提醒稻田內花粉汙染的可能性,即使現代的稻作品種為自交作物也會發生。在本研究舉出本實驗室遇到的兩個例子,一個是在TRIM的族群中,我們在同一個品系同時獲得秈稻漸滲而來的大粒種子等位基因GS3,也同時因為轉殖過程引發的體細胞複製變異,造成D17基因的突變,獲得矮株多分櫱的性狀;另一個是在前一個研究的採樣田間,有一個種子被納入胚培養的流程,兩個都在經過與秈稻基因體比對之後,提出有力證據證明其意外漸滲的未知親本為秈稻。 在第五章,意在結合單一基因的等位基因探勘與擴增遺傳歧異度兩樣工作,以便因應全球氣候環境變化、病蟲害與作物的共同演化,以及40年後人口的倍增。在此研究,將焦點放在近半世紀被廣為採用的單一來源等位基因,也就是成就綠色革命的sd1,在3000個稻作基因體資料中,探勘SD1基因所有已知的與高度可能的同功等位基因。透過IRRI提供的外表型紀錄,驗證了探勘結果的準確性,即使對株高的變異程度,只有不到30%的解釋度。 | zh_TW |
| dc.description.abstract | Rice (Oryza sativa) is one of the most important crops in the world. Since the 1st well assembled rice pseudomolecules were published in 2005, rice study has entered the post genomic era. Taking the advantage of it, we may use the physical map, rather than genetic map, to ping point the position and function of the query sequence. Many bioinformatics tools have being invented for various jobs. In this thesis, I would like to demonstrate how to organize these tools to address the questions.
In the second chapter, the purpose is to resolute the mystery of how Taichung 65 loss its photoperiod sensitivity. We used accession-specific single nucleotide olymerphism analysis to reveal the gene flow that occurred between different rice accessions decades ago and demonstrate that two landraces introgressed during the breeding process, which led to the loss of photoperiod sensitivity. Both Hd1 and Ehd1 may be important during artificial selection for flowering time, especially in a subtropical region such as Taiwan. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. In the third chapter, we used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. From the result, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries. Several rice insertional mutant libraries are publicly available for systematic analysis of gene functions. However, the tagging efficiency of these mutant resources–the relationship between genotype and phenotype is very low. In the fourth chapter, we used whole-genome sequencing to analyze a T-DNA-tagged transformant, M28590, from TRIM and one regenerant. Both showed the introgression occurred from some unknown indica rice. For M0028590, the large-grain trait came from the GS3 gene of the introgressed region and the tillering dwarf phenotype came from a single nucleotide change in the D17 gene that occurred during the callus induction to regeneration of the transformant. In addition to the known sequence changes such as T-DNA integration, single nucleotide polymorphism, insertion, deletion, chromosome rearrangement and doubling, spontaneous outcrossing occurred in the rice field may also explain some mutated traits in a tagged mutant population. Thus, the co-segregation of an integration event and the phenotype should be checked when using these mutant populations. The rice Green Revolution (GR) at the 60’S had increased agricultural production by more than two fold worldwide. In the fifth chapter, we propose the opportunities to maintain the diversity of rice germplasm and mining the information of genes. The key gene for the first GR is a lost-of-function of Semi-dwarf1 (SD1) gene, came from an old Taiwan landrace, Dee-Geo-Woo-Gen (DGWG). We mined multiple Sd1 alleles using the 3K-RGP data and validate them from IRRI’s phenomics records. The result showed about five hundred accessions consisted of DGWG sd1 alleles, including some varieties from Taiwan, IRRI and countries worldwide. The Kasalath type, i.e. full-function SD1 allele, however, were present in one-third of 3K project. The Nipponbare type, i.e. partial-function SD1 allele had present in one-fourth of 3K project. That is, sd1 allele had a narrow diversity in the germplasm. Thus, we suggest rice breeders to use the widely collected genomic information for choosing parental lines to include demanded traits and keep the diversity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:14:36Z (GMT). No. of bitstreams: 1 ntu-105-D99621104-1.pdf: 9364757 bytes, checksum: 097139273778fdf067eb22564f86087a (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of figures vii Table of tables viii 第1章 前言 1 第1節 後基因體學時代與生物資訊學 1 第2節 作物育種與基因體學 4 第3節 應用生物資訊工具探討不同的課題 6 第2章 藉生物資訊工具辨識基因體間的多型性 9 Supporting information 12 第3章 偵測稻作基因體的微量變異 23 Supporting information 27 第4章 田間材料之基因體剖面觀 57 Supporting information 60 第5章 應用基因庫巨量資料於遠程育種目標 77 第1節 前言 77 第2節 材料與方法 80 第3節 結果 84 第4節 討論 86 第5節 結論 91 Figures 92 Tables 98 Supporting information 100 第6章 綜合討論 103 第1節 精確辨識序列的變異 105 第2節 描繪目標基因體的單倍型 106 第3節 族群中的多型性 107 第4節 如何避免錯誤的發生 109 Tables 112 Figures 113 Supporting information 120 參考文獻 123 Appendix 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物資訊學 | zh_TW |
| dc.subject | 基因體學 | zh_TW |
| dc.subject | 基因型 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 稻 | zh_TW |
| dc.subject | 作物育種 | zh_TW |
| dc.subject | 單一核?酸多型性 | zh_TW |
| dc.subject | genotype | en |
| dc.subject | genomics | en |
| dc.subject | bioinformatics | en |
| dc.subject | single nucleotide polymorphism | en |
| dc.subject | plant breeding | en |
| dc.subject | Oryza sativa | en |
| dc.subject | next generation sequencing | en |
| dc.title | 藉DNA序列探討稻作基因體之變異 | zh_TW |
| dc.title | The Rice Genome Variation Revealed by DNA Sequences | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林彥蓉(Yann-Rong Lin) | |
| dc.contributor.oralexamcommittee | 胡凱康(Kae-Kang Hwu),陳凱儀(Kai-Yi Chen),古新梅(Hsin-Mei Ku),江友中(Yu-Chung Chiang),賴明信(Ming-Hsin Lai) | |
| dc.subject.keyword | 生物資訊學,基因體學,基因型,次世代定序,稻,作物育種,單一核?酸多型性, | zh_TW |
| dc.subject.keyword | bioinformatics,genomics,genotype,next generation sequencing,Oryza sativa,plant breeding,single nucleotide polymorphism, | en |
| dc.relation.page | 173 | |
| dc.identifier.doi | 10.6342/NTU201603306 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 9.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
