請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49047
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡曜陽(Yao-Yang Tsai) | |
dc.contributor.author | Min-Chiang Tsou | en |
dc.contributor.author | 鄒旻江 | zh_TW |
dc.date.accessioned | 2021-06-15T11:14:34Z | - |
dc.date.available | 2019-11-02 | |
dc.date.copyright | 2016-11-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | 參考文獻
[1]經濟部能源局,“歷年電力消費”,2016年3月。 [2]鄒金台,黃傳興,林俊宏,“我國感應電動機市場發展趨勢與能源效率標準提升研究”,台電節約能源論文專輯,2007。 [3]張心紜,急起直追,2016年與全球先進國家同步,能源報導,2014年10月。 [4]蘇宇庭,“節能風潮強力驅動,高效率馬達商機強強滾”,新電子科技雜誌,2014年8月。 [5]Szpunar, B, & Szpunar, J.A. Influence of Stresses on the Hysteresis Curve in Constructional Steel. IEEE Transactions on Magnetics, Vol.20, 1882–1884 (1984). [6]Hou, C.K, & Lee, S, Effect of Rolling Strain on the Loss Separation and Permeability of Lamination Steels. IEEE Transactions on Magnetics, Vol.30, 212–216 (1994). [7]Hug, E., Hubert, O. & Clavel, M. Some Aspects of the Magnetomechanical Coupling in the Strengthening of Non-oriented and Grain-oriented 3% Si-fe Alloys. IEEE Transactions on Magnetics, Vol.33, 763–771 (1997). [8]Landgraf, F. J. G., Emura, M., Ito, K. & Carvalho, P. S. G. Effect of Plastic Deformation on the Magnetic Properties of Non-oriented Electrical Steels. Journal of magnetism and magnetic materials, Vol.215, 94–96 (2000). [9]Iordache, V. E. & Hug, E. Effect of Mechanical Strains on the Magnetic Properties of Electrical Steels. Journal of Optoelectronics and Advanced Materials, Vol.6, 1297–1303 (2004). [10]Yamamoto, K. & Yanase, S. Magnetic Properties of Non-Oriented Electrical Steels under Compressive Stress Normal to Their Surface. Przegląd Elektrotechniczny, Vol.87, 97–100 (2011). [11]Senda, K., Fujita, A., Honda, A., Kuroki, N. & Yagi, M. Magnetic Properties and Domain Structure of Non-oriented Electrical Steel Under Stress. IEEJ Transactions on Fundamentals and Materials, Vol.131, 884–890 (2011). [12]Emura, M., Landgraf, F. J. G., Ross, W. & Barreta, J. R. The Influence of Cutting Technique on the Magnetic Properties of Electrical Steels. Journal of Magnetism and Magnetic Materials, Vol.254, 358–360 (2003). [13]Maurel, V., Ossart, F. & Billardon, R. Residual Stresses in Punched Laminations: Phenomenological Analysis and Influence on the Magnetic Behavior of Electrical Steels. Journal of Applied Physics, Vol.93, 7106–7108 (2003). [14]Baudouin, P., De Wulf, M., Kestens, L. & Houbaert, Y. The Effect of the Guillotine Clearance on the Magnetic Properties of Electrical Steels. Journal of magnetism and magnetic materials, Vol.256, 32–40 (2003). [15]Pulnikov,A. B.Philippe. & M.Jan. Induced Stresses Due to the Mechanical Cutting of Non-oriented Electrical Steels. Journal of magnetism and magnetic materials, Vol.254, 355-357 (2003). [16]Kurosaki, Y., Mogi, H., Fujii, H., Kubota, T. & Shiozaki, M. Importance of Punching and Workability in Non-oriented Electrical Steel Sheets. Journal of Magnetism and Magnetic Materials 320, 2474–2480 (2008). [17]Nakazaki, O., Kai, Y., Todaka, T. & Enokizono, M. Iron Loss Properties of a Practical Rotating Machine Stator Core at Each Manufacturing Stage. International Journal of Applied Electromagnetics and Mechanics, Vol.33, (2010). [18]Jeong.K, Y & Park, C.-H. & Koh, C.-S. Comparison of Iron Loss at Different Manufacturing Process of Actual Stator Core. 2013 International Conference on Electrical Machines and Systems (ICEMS), 523–525 (IEEE, 2013). [19]Vandenbossche, L. et al. Iron Loss Modelling Which Includes the Impact of Punching, Applied to High-efficiency Induction Machines. Electric Drives Production Conference (EDPC), 2013 3rd International, 1–10 (IEEE, 2013) [20]Kashiwara, Y., Fujimura, H., Okamura, K., Imanishi, K. & Yashiki, H. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet. Electrical Engineering in Japan, Vol.183, 1–11 (2013). [21]黃金通. '沖壓製程對電磁鋼片加工硬化區之研究.' 臺灣大學機械工程學研究所學位論文 (2015) [22]Nakata, T., Nakano, M. & Kawahara, K. Effects of Stress Due to Cutting on Magnetic Characteristics of Silicon Steel. IEEE Translation Journal on Magnetics in Japan, Vol.7, 453–457 (1992). [23]Ossart, F., Hug, E., Hubert, O., Buvat, C. & Billardon, R. Effect of Punching on Electrical Steels: Experimental and Numerical Coupled Analysis. IEEE Transactions on Magnetics, Vol.36, 3137–3140 (2000). [24]Takezawa, M., Kitajima, K., Morimoto, Y., Yamasaki, J. & Kaido, C. Effect of Strain by Mechanical Punching on Nonoriented Si-Fe Electrical Sheets for a Nine-Slot Motor Core. IEEE Transactions on Magnetics, Vol.42, 2790–2792 (2006). [25]Kai, Y., Tsuchida, Y., Todaka, T. & Enokizono, M. Evaluation of Local Residual Stress Distribution of Stator Core in a Rotating Machine. Electrical Engineering in Japan, Vol.181, 1–8 (2012). [26]Kuo, S.K., Lee, W.C., Lin, S.Y. & Lu, C.-Y. The Influence of Cutting Edge Deformations on Magnetic Performance Degradation of Electrical Steel. 17th International Conference on Electrical Machines and Systems (ICEMS), 3041–3046 (IEEE, 2014). [27]Litman, T. Efficient Electric Motor Systems Handbook. (Prentice Hall, 1995). [28]日經技術在線/左右馬達性能的線圈/2010.12.23 [29]路昌工業股份有限公司/馬達單條與多條線區的選擇/2014 [30]鐵損-維基百科, http://zh.wikipedia.org/wiki/鐵損,2015 [31]蕭一清,黃議興等人,“電動車驅動馬達用電磁鋼片開發”,礦冶54/2(2010) [32]Yabumoto, M., Kaido, C., Wakisaka, T., Kubota, T. & Suzuki, N. Electrical Steel Sheet for Traction Motor of Hybrid/Electric Vehicles. SHINNITTETSU GIHO 51–54 (2003). [33]Landgraf, F. J. G. & Emura, M. Losses and Permeability Improvement by Stress Relieving Fully Processed Electrical Steels with Previous Small Deformations. Journal of magnetism and magnetic materials, Vol.242, 152–156 (2002). [34]吳建諭,“繞線製程案例分享”, 智能馬達技術應用與產業發展研討會,2012 [35]余俊德,“附V型壓環之精密剪斷有限元素分析”, 國立交通大學碩士論文,2003 [36]周開華,“簡明精沖手冊第二版”,國防工業出版社,2005 [37]Partech Corporation. Fineblanking Design Guide - Basic Fineblanking Process. [38]National Programme on Technology Enhanced Learning, “Manufacturing Process I (Web)”, nptel.ac.in [39]MISUMI INDIA Pvt Ltd., India, http://in.misumi-ec.com [40]戴宜傑, 徐有材,“沖壓加工與沖模設計”, 東喬出版社 ,1981. [41]Sonmez, F. O. & Demir, A. Analytical Relations Between Hardness and Strain for Cold Formed Parts. Journal of materials processing technology, Vol.186, 163–173 (2007). [42]Tabor, D. The Hardness of Metals, Clarendon Press, New York, 1951. [43]中國鋼鐵股份有限公司,電磁鋼捲型錄 [44]Baudouin, P. & Houbaert, Y. The Study of Two Different Strain Paths on the Deterioration of the Magnetic Properties of Non-oriented Electrical Steels. Journal of magnetism and magnetic materials, Vol.260, 19–22 (2003). [45]Saidur, R. A Review on Electrical Motors Energy Use and Energy Savings. Renewable and Sustainable Energy Reviews, Vol.14, 877–898 (2010). [46]B, WANG. & S.WANG. Study and Manufacture of Meet NEMA Standard’s Premium Three-Phase Explosion Proof Asynchronous Motor. Electric Machines & Control Application, Vol.2, 003 (2011). [47]吳宗彥. '伺服沖床沖頭運動曲線之研究.' 清華大學動力機械工程學系學位論文(2014): 1-65. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49047 | - |
dc.description.abstract | 電磁鋼片在製程中會因產生殘留應力及塑性變形等因素造成電磁特性之惡化,進而對電動機之效率產生不良之影響。這些製程上的影響是電動機整體效率與預期上有所落差的原因之一,且各製程上可能產生之損耗是非常複雜且難以預估的,因此本實驗針對沖壓製程進行探討,了解其如何造成電磁鋼片之損耗。
在本實驗中,分別探討沖壓槽型、沖壓參數及沖壓斷面對電磁鋼片特性之影響,其中包括三種槽型、十組參數,並依硬化分布及估算之鐵損作為評估對電磁特性影響之依據。 在槽型實驗中,以改變槽型之倒角半徑進行,上倒角半徑設計有0.254mm、1mm、2mm,下倒角半徑則有尖角、0.254mm、0.4mm等設計,實驗結果顯示,增加倒角半徑能減少在倒角區之硬化影響區及鐵損,但倒角半徑過大時會使倒角區所佔比例增加,使整體鐵損上升,而最佳之槽型設計能改善鐵損約16%。 在沖壓參數實驗中,提高沖頭速度、沖壓行程模式為振動模式且較大之振幅、提高壓料板壓力及反壓板壓力皆能降低硬化影響區域及鐵損,而其中改善效果最佳之參數為沖壓行程,當振幅為80μm時,鐵損能降低30%。 在沖壓斷面品質之研究中,可發現在深度較深之區域其硬化程度有明顯的增加,並與沖壓斷面區域分布有關,而調整參數能影響各區域之分布。 | zh_TW |
dc.description.abstract | The iron loss of the electrical steel sheet increases dramatically due to the plastic strain and work hardening after punching process. This effect also reduces the overall efficiency of the motor, and the iron loss effect of electrical steel sheet in the punching process is difficult to predict and control. So, in this research will discuss the iron loss in punching process.
In order to find out the reason of the iron loss in punching process, this research will discuss the slot of stator, the parameter of punching process and the quality of cutting edge. To discuss the effect of punching process, work hardening distribution and estimated iron loss is used to be a standard of comparison. In the experiment of the slot of stator, three slots with different fillet radius was discussed. The fillet radius of upper part has 0.254mm, 1mm and 2mm. The fillet radius of bottom part has cusp angle, 0.254mm and 0.4mm. The results show that the hardening area and the iron loss in the fillet area will reduce when increasing the fillet radius. When the fillet radius exceeds 1mm, the iron loss will increase due to the fillet area increase. The best design of slot can reduce 16% of iron loss. In the experiment of the parameter of punching process, the hardening area and the iron loss can be reduced by raising the punching speed, punching with vibration mode and large amplitude or raising blank holder and counter punch pressure. In these four parameters, adjusting punching mode makes biggest effect on reducing iron loss. When using vibration mode and amplitude 80μm can reduce 30% of iron loss. In part of the quality of cutting edge, the work hardening will be severe when measuring in deeper depth, and relates to the part of cutting edge. Adjusting the parameter of punching process can change the distribution of cutting edge. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:14:34Z (GMT). No. of bitstreams: 1 ntu-105-R03522732-1.pdf: 4123265 bytes, checksum: 894332b7ab4d17b212e1c8fd33466f4f (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
口試委員審定書...................................i 誌謝.............................................ii 摘要............................................iii ABSTRACT........................................iv 目錄.............................................v 圖目錄...........................................viii 表目錄...........................................xi 第1章 緒論.......................................1 1.1 研究背景.....................................1 1.2 文獻回顧.....................................2 1.3 研究動機與目的................................6 1.4 論文大綱.....................................7 第2章 相關技術理論介紹............................8 2.1 電動機基本構造及損耗簡介.......................8 2.1.1 電動機之基本構造............................8 2.1.2 電動機之損耗種類............................8 2.2 電動機定子之製程步驟.........................14 2.2.1 單片切割及沖壓.............................15 2.2.2 疊層鉚接及焊接.............................16 2.2.3 退火熱處理.................................17 2.2.4 繞線製程...................................17 2.2.5 固定封裝...................................18 2.3 沖壓理論.....................................18 2.3.1 沖壓參數之定義.............................18 2.3.2 精密下料之製程特性.........................20 2.3.3 沖壓斷面分析...............................20 2.3.4 材料在沖壓過程中的塑性變形..................22 2.3.5 材料在沖壓過程中的加工硬化..................23 第3章 實驗步驟與方法.............................25 3.1 實驗規劃流程圖...............................25 3.1.1 電磁鋼片之應變、硬化及電磁特性分析...........26 3.1.2 定子槽型幾何變化對槽周圍硬化分布之影響.......27 3.1.3 沖壓製程參數對槽周圍硬化分布之影響...........28 3.1.4 沖壓斷面不同深度對硬化分布之影響.............30 3.2 實驗材料、設備及量測儀器......................31 3.2.1 實驗材料...................................31 3.2.2 實驗設備...................................31 3.2.3 量測儀器...................................38 3.3 實驗方法與步驟................................39 3.3.1 建立塑性變形及加工硬化關係之實驗.............39 3.3.2 定子槽型幾何變化對槽周圍硬化分布影響之實驗....40 3.3.3 沖壓製程參數對對槽周圍硬化分布影響之實驗......42 3.3.4 沖壓斷面不同深度對硬化分布影響之實驗..........43 第4章 實驗結果與討論..............................44 4.1 建立塑性變形及加工硬化關係實驗 ................44 4.2 定子槽型幾何變化對槽周圍硬化分布影響之實驗......45 4.2.1 實驗假設及評估方式..........................45 4.2.2 槽型幾何外形對槽周圍之影響...................49 4.2.3 槽型幾何外形對直線區及倒角區硬化之影響........52 4.2.4 槽型幾何外形對鐵損之影響.....................56 4.2.5 小結.......................................57 4.3 沖壓製程參數對槽周圍硬化分布影響之實驗..........58 4.3.1 沖壓製程參對槽周圍硬化之影響.................58 4.3.2 沖頭速度對硬化分布及鐵損之影響...............60 4.3.3 沖壓行程對硬化分布及鐵損之影響...............61 4.3.4 壓料板壓力、反壓板壓力對硬化分布及鐵損之影響..63 4.3.5 小結......................................67 4.4 沖壓斷面不同深度對硬化分布之影響...............68 4.4.1 量測深度定義及量測方法......................68 4.4.2 不同深度對硬化分布及鐵損之影響...............70 4.4.3 沖壓參數對改變沖壓斷面區域分布之可能性........77 4.4.4 小結.......................................79 4.5 問題與討論....................................79 4.5.1 槽型幾何外型及沖壓參數之影響探討..............79 4.5.2 實驗誤差討論................................80 4.5.3 電動機鐵損評估..............................80 第5章 結論與未來展望..............................83 5.1 結論.........................................83 5.2 未來展望.....................................85 參考文獻.........................................86 | |
dc.language.iso | zh-TW | |
dc.title | 電磁鋼片在沖壓製程後之硬化分布及鐵損研究 | zh_TW |
dc.title | Work Hardening Distribution and Iron Loss of Electrical Steel after Punching Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李貫銘(Kuan-Ming Li),陽毅平(Yee-Pien Yang) | |
dc.subject.keyword | 精密沖壓,定子槽型,伺服沖床,鐵損,硬化分布, | zh_TW |
dc.subject.keyword | Fine Blanking,Slot of stator,Servo press,Iron loss,Distribution of work hardening area, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU201601011 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。