Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖尉斯(Wei-Ssu Liao)
dc.contributor.authorChia-Hsuan Changen
dc.contributor.author張嘉軒zh_TW
dc.date.accessioned2021-06-15T11:14:29Z-
dc.date.available2019-11-02
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-21
dc.identifier.citation1. Bangal, M.; Ashtaputre, S.; Marathe, S.; Ethiraj, A.; Hebalkar, N.; Gosavi, S. W.; Urban, J.; Kulkarni, S. K., Semiconductor nanoparticles. Hyperfine Interact. 2005, 160, 81-94.
2. Rao, J. P.; Geckeler, K. E., Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887-913.
3. Akbarzadeh, A.; Samiei, M.; Davaran, S., Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144-156.
4. Abou El-Nour, K. M. M.; Eftaiha, A. a.; Al-Warthan, A.; Ammar, R. A. A., Synthesis and applications of silver nanoparticles. Arabian J. Chem. 2010, 3, 135-140.
5. Salata, O. V., Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004, 2, 3-3.
6. Edmundson, M. C.; Capeness, M.; Horsfall, L., Exploring the potential of metallic nanoparticles within synthetic biology. N. Biotechnol. 2014, 31, 572-578.
7. Park, B.-W.; Kim, D.-S.; Yoon, D.-Y., Surface modification of gold electrode with gold nanoparticles and mixed self-assembled monolayers for enzyme biosensors. Korean J. Chem. Eng. 2011, 28, 64-70.
8. Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462-493.
9. Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N., Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20-42.
10. Gates, B. D.; Xu, Q. B.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171-1196.
11. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103-1169.
12. Yang, J.; Choi, M. K.; Kim, D.-H.; Hyeon, T., Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 2016, 28, 1176-1207.
13. Somasundaran, P.; Moudgil, B. M., Reagents in mineral technology. Marcel Dekker: New York, 1988.
14. Schreiber, F., Structure and growth of self-assembling monolayers. Prog. Polym. Sci. 2000, 65, 151-256.
15. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc. 1980, 102, 92-98.
16. Jadhav, S. A., Self-assembled monolayers (sams) of carboxylic acids: An overview. Cent. Eur. J. Chem. 2011, 9, 369-378.
17. Schlenoff, J. B.; Li, M.; Ly, H., Stability and self-exchange in alkanethiol monolayers. J. Am. Chem. Soc. 1995, 117, 12528-12536.
18. Ulman, A., Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533-1554.
19. Hou, S. Y.; Burton, E. A.; Simon, K. A.; Blodgett, D.; Luk, Y. Y.; Ren, D. C., Inhibition of escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Appl. Environ. Microbiol. 2007, 73, 4300-4307.
20. Tam-Chang, S.-W.; Biebuyck, H. A.; Whitesides, G. M.; Jeon, N.; Nuzzo, R. G., Self-assembled monolayers on gold generated from alkanethiols with the structure rnhcoch2sh. Langmuir 1995, 11, 4371-4382.
21. Shnidman, Y.; Ulman, A.; Eilers, J. E., Effect of perturbing strata on chain conformations and ordering in closely packed layered structures of chain molecules. Langmuir 1993, 9, 1071-1081.
22. Claridge, S. A.; Liao, W. S.; Thomas, J. C.; Zhao, Y. X.; Cao, H. H.; Cheunkar, S.; Serino, A. C.; Andrews, A. M.; Weiss, P. S., From the bottom up: Dimensional control and characterization in molecular monolayers. Chem. Soc. Rev. 2013, 42, 2725-2745.
23. Lahiri, J.; Isaacs, L.; Tien, J.; Whitesides, G. M., A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study. Anal. Chem. 1999, 71, 777-790.
24. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
25. Andrews, A. M.; Liao, W.-S.; Weiss, P. S., Double-sided opportunities using chemical lift-off lithography. Acc. Chem. Res. 2016.
26. Dulcey, C.; Georger, J.; Krauthamer, V.; Stenger, D.; Fare, T.; Calvert, J., Deep uv photochemistry of chemisorbed monolayers: Patterned coplanar molecular assemblies. Science 1991, 252, 551-554.
27. Qin, D.; Xia, Y.; Whitesides, G. M., Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491-502.
28. Herzer, N.; Hoeppener, S.; Schubert, U. S., Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem. Commun. 2010, 46, 5634-5652.
29. Ryan, D.; Parviz, B. A.; Linder, V.; Semetey, V.; Sia, S. K.; Su, J.; Mrksich, M.; Whitesides, G. M., Patterning multiple aligned self-assembled monolayers using light. Langmuir 2004, 20, 9080-9088.
30. Lercel, M. J.; Tiberio, R. C.; Chapman, P. F.; Craighead, H. G.; Sheen, C. W.; Parikh, A. N.; Allara, D. L., Self‐assembled monolayer electron‐beam resists on gaas and sio2. J. Vac. Sci. Technol., B 1993, 11, 2823-2828.
31. Weimann, T.; Geyer, W.; Hinze, P.; Stadler, V.; Eck, W.; Golzhauser, A., Nanoscale patterning of self-assembled monolayers by e-beam lithography. Microelectron. Eng. 2001, 57–58, 903-907.
32. Golzhauser, A.; Eck, W.; Geyer, W.; Stadler, V.; Weimann, T.; Hinze, P.; Grunze, M., Chemical nanolithography with electron beams. Adv. Mater. 2001, 13, 806-809.
33. Manfrinato, V. R.; Zhang, L.; Su, D.; Duan, H.; Hobbs, R. G.; Stach, E. A.; Berggren, K. K., Resolution limits of electron-beam lithography toward the atomic scale. NanoNano Lett. Letters 2013, 13, 1555-1558.
34. Mendes, P. M.; Jacke, S.; Critchley, K.; Plaza, J.; Chen, Y.; Nikitin, K.; Palmer, R. E.; Preece, J. A.; Evans, S. D.; Fitzmaurice, D., Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. Langmuir 2004, 20, 3766-3768.
35. Zhou, X.; Boey, F.; Huo, F.; Huang, L.; Zhang, H., Chemically functionalized surface patterning. Small 2011, 7, 2273-2289.
36. Liu, G.-y.; Salmeron, M. B., Reversible displacement of chemisorbed n-alkanethiol molecules on au(111) surface: An atomic force microscopy study. Langmuir 1994, 10, 367-370.
37. Xu, S.; Liu, G.-y., Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir 1997, 13, 127-129.
38. Ross, C. B.; Sun, L.; Crooks, R. M., Scanning probe lithography. 1. Scanning tunneling microscope induced lithography of self-assembled n-alkanethiol monolayer resists. Langmuir 1993, 9, 632-636.
39. Liu, G.-Y.; Xu, S.; Qian, Y., Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res. 2000, 33, 457-466.
40. Brandow, S. L.; Dressick, W. J.; Dulcey, C. S.; Koloski, T. S.; Shirey, L. M.; Schmidt, J.; Calvert, J. M., Nanolithography by displacement of catalytic metal clusters using an atomic force microscope tip. J. Vac. Sci. Technol., B 1997, 15, 1818-1824.
41. Garno, J. C.; Yang, Y.; Amro, N. A.; Cruchon-Dupeyrat, S.; Chen, S.; Liu, G.-Y., Precise positioning of nanoparticles on surfaces using scanning probe lithography. Nano Lett. 2003, 3, 389-395.
42. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., 'Dip-pen' nanolithography. Science 1999, 283, 661-663.
43. Hong, S.; Zhu, J.; Mirkin, C. A., Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 1999, 286, 523-525.
44. Ivanisevic, A.; Mirkin, C. A., “Dip-pen” nanolithography on semiconductor surfaces. J. Am. Chem. Soc. 2001, 123, 7887-7889.
45. Su, M.; Liu, X.; Li, S.-Y.; Dravid, V. P.; Mirkin, C. A., Moving beyond molecules:  Patterning solid-state features via dip-pen nanolithography with sol-based inks. J. Am. Chem. Soc. 2002, 124, 1560-1561.
46. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of dip-pen nanolithography. Nat. Nanotechnol. 2007, 2, 145-155.
47. Liu, X.; Fu, L.; Hong, S.; Dravid, V. P.; Mirkin, C. A., Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography. 2002, 14, 231-234.
48. Kumar, A.; Biebuyck, H. A.; Whitesides, G. M., Patterning self-assembled monolayers - applications in materials science. Langmuir 1994, 10, 1498-1511.
49. James, L. W.; Amit, K.; Hans, A. B.; Enoch, K.; George, M. W., Microcontact printing of self-assembled monolayers: Applications in microfabrication. Nanotechnology 1996, 7, 452.
50. Srinivasan, C.; Mullen, T. J.; Hohman, J. N.; Anderson, M. E.; Dameron, A. A.; Andrews, A. M.; Dickey, E. C.; Horn, M. W.; Weiss, P. S., Scanning electron microscopy of nanoscale chemical patterns. ACS Nano 2007, 1, 191-201.
51. Libioulle, L.; Bietsch, A.; Schmid, H.; Michel, B.; Delamarche, E., Contact-inking stamps for microcontact printing of alkanethiols on gold. Langmuir 1999, 15, 300-304.
52. Palacin, S.; Hidber, P. C.; Bourgoin, J.-P.; Miramond, C.; Fermon, C.; Whitesides, G. M., Patterning with magnetic materials at the micron scale. Chem. Mater. 1996, 8, 1316-1325.
53. Hidber, P. C.; Helbig, W.; Kim, E.; Whitesides, G. M., Microcontact printing of palladium colloids:  Micron-scale patterning by electroless deposition of copper. Langmuir 1996, 12, 1375-1380.
54. Braunschweig, A. B.; Huo, F.; Mirkin, C. A., Molecular printing. Nat. Chem. 2009, 1, 353-358.
55. Shipway, A. N.; Katz, E.; Willner, I., Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1, 18-52.
56. Delamarche, E.; Schmid, H.; Michel, B.; Biebuyck, H., Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 1997, 9.
57. Xia, Y.; Whitesides, G. M., Soft lithography. Angew. Chem. Int. Ed. 1998, 37, 550-575.
58. Xia, Y.; Whitesides, G. M., Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153-184.
59. Liao, W. S.; Cheunkar, S.; Cao, H. H.; Bednar, H. R.; Weiss, P. S.; Andrews, A. M., Subtractive patterning via chemical lift-off lithography. Science 2012, 337, 1517-1521.
60. Sunkara, V.; Park, D.-K.; Cho, Y.-K., Versatile method for bonding hard and soft materials. RSC Adv. 2012, 2, 9066-9070.
61. Han, P.; Kurland, A. R.; Giordano, A. N.; Nanayakkara, S. U.; Blake, M. M.; Pochas, C. M.; Weiss, P. S., Heads and tails: Simultaneous exposed and buried interface imaging of monolayers. ACS Nano 2009, 3, 3115-3121.
62. Maksymovych, P.; Sorescu, D. C.; Yates, J. T., Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the au(111) surface. Phys. Rev. Lett. 2006, 97, 4.
63. Yu, M.; Bovet, N.; Satterley, C. J.; Bengio, S.; Lovelock, K. R. J.; Milligan, P. K.; Jones, R. G.; Woodruff, D. P.; Dhanak, V., True nature of an archetypal self-assembly system: Mobile au-thiolate species on au(111). Phys. Rev. Lett. 2006, 97, 4.
64. Cao, H. H.; Nakatsuka, N.; Serino, A. C.; Liao, W.-S.; Cheunkar, S.; Yang, H.; Weiss, P. S.; Andrews, A. M., Controlled DNA patterning by chemical lift-off lithography: Matrix matters. ACS Nano 2015, 9, 11439-11454.
65. Knapp, D. R., Handbook of analytical derivatization reactions. John Wiley & Sons: New York, 1979.
66. Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y., Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun. 2004, 1978-1979.
67. Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf., B 2007, 58, 3-7.
68. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature, Phys. Sci. 1973, 241.
69. Sun, W.; Xu, X.; Pavlova, M.; Edwards, A. M.; Joachimiak, A.; Savchenko, A.; Christendat, D., The crystal structure of a novel sam-dependent methyltransferase ph1915 from pyrococcus horikoshii. Protein Sci. 2005, 14, 3121-3128.
70. Jv, Y.; Li, B.; Cao, R., Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017-8019.
71. Bilić, A.; Reimers, J. R.; Hush, N. S.; Hafner, J., Adsorption of ammonia on the gold (111) surface. J. Chem. Phys 2002, 116, 8981-8987.
72. Gallardo, I.; Pinson, J.; Vila, N., Spontaneous attachment of amines to carbon and metallic surfaces. J. Phys. Chem. B 2006, 110, 19521-19529.
73. Ashwell, G. J.; Williams, A. T.; Barnes, S. A.; Chappell, S. L.; Phillips, L. J.; Robinson, B. J.; Urasinska-Wojcik, B.; Wierzchowiec, P.; Gentle, I. R.; Wood, B. J., Self-assembly of amino−thiols via gold−nitrogen links and consequence for in situ elongation of molecular wires on surface-modified electrodes. J. Phys. Chem. C 2011, 115, 4200-4208.
74. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D., Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemical Society 1987, 109, 3559-3568.
75. Vikholm-Lundin, I.; Rosqvist, E.; Ihalainen, P.; Munter, T.; Honkimaa, A.; Marjomaki, V.; Albers, W. M.; Peltonen, J., Assembly of citrate gold nanoparticles on hydrophilic monolayers. Appl. Surf. Sci. 2016, 378, 519-529.
76. DeRuiter, J., Carboxylic acid structure and chemistry: Part 1. Principles of drug action I. Auburn University, Alabama 2005, 1-11.
77. Hughes, M. P.; Smith, B. D., Enhanced carboxylate binding using urea and amide-based receptors with internal lewis acid coordination:  A cooperative polarization effect. J. Org. Chem. 1997, 62, 4492-4499.
78. Guinn, E. J.; Pegram, L. M.; Capp, M. W.; Pollock, M. N.; Record, M. T., Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16932-16937.
79. Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J., Kinetic control of interparticle spacing in au colloid-based surfaces:  Rational nanometer-scale architecture. J. Am. Chem. Soc. 1996, 118, 1148-1153.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49044-
dc.description.abstract本研究使用化學拔除法建立圖形化的自組裝單分子層,並將其應用於奈米粒子在基材表面的自組裝。化學拔除法是一項製造高解析度單分子層圖形的技術,此方法不僅可以精準控制表面自組裝硫醇分子的位置,且經過處理的表面更會具有與以往不同的性質,進而影響奈米粒子的置放,例如:表面有胺基的奈米粒子置放在經過化學拔除的表面與未經處理的表面上之數量有相當大的差異。因此,本研究對基材表面的性質進行探討,透過這些性質的調控,會改變奈米粒子與基材間的表面化學吻合性,進而影響奈米粒子的置放結果。
  此外,不同表面官能基的奈米粒子亦會對表面具有不同且高度的選擇性,例如:表面為羧基的奈米粒子會透過氫鍵作用力而吸附於末端為羥基的自組裝單分子修飾層上,但由於缺乏與金表面的親和性而無法置放在經過化學拔除的區域。另外,表面為胺基的奈米粒子會藉由氮金作用力而大量置放於經過化學拔除的區域,僅有少數的奈米粒子會因氫鍵作用力而吸附於修飾單分子層的表面。
  結合製造高品質單分子層圖形以及改變表面性質的優點,本實驗更進一步將化學拔除法製作的單分子層圖形應用於奈米粒子的自組裝置放,並且成功製造出於微米與奈米尺寸下的奈米粒子排列圖形。
zh_TW
dc.description.abstractNanoparticle patterning attracts considerable attention due to its wide application in many fields, such as bio/chemical sensors and electronics. However, close-packing nanoparticles at specific regions and deposition control with high fidelity still face many challenges. Herein, a strategy for high quality nanoparticle patterning by chemical lift-off lithography (CLL) is demonstrated. Chemical lift-off lithography is a promising technique to fabricate high resolution self-assembled monolayer (SAM) patterns on gold substrates. In this study, functionalized nanoparticles are selectively deposited into different areas created by the chemical lift-off processes, while the allocation of nanoparticles relies on their surface functionalities. It is found that amine-containing molecule functionalized nanoparticles tend to pack into the post-chemical lift-off regions, while the carboxyl-rich molecule encaptured ones preferentially sit at the hydroxyl‑terminated SAM covered areas. This strategy provides a straightforward way to selectively deposit nanoparticles with high fidelity and controllable density. Futhermore, high quality micro/nano scale nanoparticle packing patterns are achieved.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:14:29Z (GMT). No. of bitstreams: 1
ntu-105-R03223126-1.pdf: 84630912 bytes, checksum: 16acbdb4be69735fc74a10413118e68b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書——————————————— I
誌 謝———————————————————— II
摘 要———————————————————— III
Abstract——————————————————— IV
目 錄———————————————————— V
圖目錄———————————————————— VIII
表目錄———————————————————— XI
第一章 緒論—————————————————— 1
1.1 奈米粒子簡介——————————————— 1
1.2 奈米粒子於表面的自組裝—————————— 2
1.3 自組裝單分子層—————————————— 4
1.4 單分子層圖形化之技術——————————— 7
1.4.1 光微影技術———————————————— 7
1.4.2 電子束微影———————————————— 10
1.4.3 掃描探針微影——————————————— 12
1.4.4 浸筆奈米微影——————————————— 16
1.4.5 微觸印刷法———————————————— 18
1.5 化學拔除法———————————————— 22
1.5.1 化學拔除法原理—————————————— 23
1.5.2 化學拔除法應用於自組裝單分子層之圖形化—— 25
1.5.3 化學拔除法應用於奈米粒子在基材上的自組裝— 26
第二章 實驗部分———————————————— 27
2.1 實驗藥品————————————————— 27
2.2 實驗材料————————————————— 28
2.3 實驗儀器————————————————— 28
2.4 實驗方法————————————————— 30
2.4.1 模具製作————————————————— 30
2.4.2模型翻製————————————————— 33
2.4.3基材製備————————————————— 33
2.4.4 Cys-AuNPs之合成———————————— 34
2.4.5 Cit-AuNPs之合成—————————————35
2.4.6 金奈米粒子置放之選擇性與鑑定——————— 36
2.4.7 探討表面性質對於奈米粒子置放之影響———— 37
2.4.7.1 探討庫倫作用力對於Cys-AuNPs置放之影響— 39
2.4.7.2 奈米粒子官能基與基材表面親和性對於Cys-AuNPs置放之影響— 39
2.4.7.3 探討自組裝硫醇分子種類對於Cys-AuNPs置放之影響— 40
2.4.8 Cit-AuNPs與單分子層間氫鍵之驗證————— 41
2.4.9 Cys-AuNPs之表面密度調控———————— 42
2.4.9.1 調控Cys-AuNPs溶液浸泡時間——————— 42
2.4.9.2 調控Cys-AuNPs溶液濃度—————————42
2.4.10 Cit-AuNPs之表面密度調控———————— 43
2.4.10.1 調控Cit-AuNPs溶液浸泡時間——————— 43
2.4.10.2 調控Cit-AuNPs溶液濃度—————————43
2.4.11 奈米粒子自組裝微米�奈米結構———————44
2.4.11.1 奈米粒子自組裝微米結構————————— 44
2.4.11.2 奈米粒子自組裝奈米結構———————— 44
第三章 結果與討論——————————————— 45
3.1 Cys-AuNPs與基材間作用力之探討—————— 45
3.1.1 表面性質對於Cys-AuNPs置放之影響————— 46
3.1.1.1 庫倫作用力對於Cys-AuNPs置放之影響——— 48
3.1.1.2 奈米粒子官能基與基材表面親和性對於Cys-AuNPs置放之影響———49
3.1.1.3 自組裝硫醇分子種類對於Cys-AuNPs置放之影響———51
3.2 Cit-AuNPs與基材間作用力探討——————————— 53
3.2.1 表面性質對於Cit-AuNPs置放之影響——————— 54
3.2.2 Cit-AuNPs與單分子層間氫鍵之驗證—————————56
3.3 Cys-AuNPs之表面密度調控—————————————58
3.3.1 調控Cys-AuNPs溶液浸泡時間————————— 58
3.3.2 調控Cys-AuNPs溶液濃度————————————— 61
3.4 Cit-AuNPs之表面密度調控————————————— 63
3.4.1 調控Cit-AuNPs溶液浸泡時間—————————— 63
3.4.2 調控Cit-AuNPs溶液濃度——————————————65
3.5 奈米粒子自組裝微米�奈米結構——————————— 67
3.5.1 奈米粒子自組裝微米結構———————————— 68
3.5.2 奈米粒子自組裝奈米結構——————————————71
第四章 結論—————————————————————— 73
第五章 參考文獻———————————————————— 74
dc.language.isozh-TW
dc.title以化學拔除法選擇性組裝置放奈米粒子zh_TW
dc.titleNanoparticle Selective Assembly via Chemical Lift-Off Lithographyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳浩銘(Hao-Ming Chen),李介仁(Jie-Ren Li),羅世強(Shyh-Chyang Luo)
dc.subject.keyword化學拔除法,自組裝,奈米粒子圖形化,zh_TW
dc.subject.keywordchemical lift-off lithography,self-assembled,nanoparticle pattern,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201602382
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
82.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved