請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49035完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘國隆(Kuo-Lung Pan) | |
| dc.contributor.author | Yu-Chun Cheng | en |
| dc.contributor.author | 鄭伃均 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:14:14Z | - |
| dc.date.available | 2019-10-05 | |
| dc.date.copyright | 2016-10-05 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-20 | |
| dc.identifier.citation | [1] A.Cohen-Zur and B.Natan,”Experimental investigation of a supersonic combustion solid fuel ramjet,”Journal of Propulsion and Power,vol.14,pp.880-889,1998.
[2] M.Oevermann,”Numerical investigation of turbulent hydrogen combustion on a Sctamjet using flamelet modeling, ”Aerospace Science and Technology,vol. 4,pp 463-480,2000 [3] F. Gernin and S. Menon,’Simulation of turbulent Mixing Behind a Struct Injector in Supersonic Flow’,AIAA 47th,2009 [4] K.Pandey and A.Singh,,”Numerical Analysis of supersonic Combustion by Struct Flat Duct Length with SA Turbulence Model,”IACSIT International Journal of Engineering and Technology,vol.3,pp.193-198,2010 [5] K.Pandey and T.Sivasakthivel,”CFD analysis of mixing and combustion of a scramjet combustor with a planer strut injector,”International Journal of Environmental Science and Development,vol.2,2011. [6] K.H. Yu and K.J.Wilson and K.C. Schadow “Effect of Flame-Holding Cavities on Supersonic-Combustion Performance”, Journal on Propulsion and Power,vol 17,2001 [7] 林文昌(2010)多孔性圓柱預混燃燒器尾流火焰之穩定性分析研究 [8] 陳劭軒(2012)多孔性圓柱預混燃燒器之富氧燃燒特性分析 [9] Y.D. Chen and D.D. Chen and C.H Chen,”Transient behaviers of a flame over a Tsuji burner”, The Chinese Society of Theoritical and applied Mechanics and Springer-Verlag GmbH,2008 [10] C.H. Chen and F.B Weng,’’Flame Stabilization and Blowoff Over a porous Cylinder’’,Combustion Science and Technology,2007 [11] T.Kenichi and N. Takashi,’’Asymptotic Analysis on the Extinction of Diffusion Flames in Supersonic Stagnation-point Flow’’,JSME International Journal,series B,vol 39,No2,1996 [12] T.Kenichi and N. Takashi,”Counterflow Diffusion Flame in supersonic airflow”,Twenty-sixth symposium on combustion,1996,pp.2877-2833 [13] FLUENT 6.3 User’s Guide , 2006. [14] U.Maas, and J.Warnatz, Ignition processes in hydrogenoxygenmixtures, Combust. Flame 74 1988 53–69. [15] Chemkin Collection 3.7 User’s Guide, 2002. [16] W.Waidmann, and U.Brummund , “Supersonic Combustion of Hydrogen/Air in a Scramjet Combustion Chamber”, Space Technol,Vol.15, NO.6, pp.421-429, 1995. [17] Y.Bartosiewicz, Z.Aidoun, P.Desevaux, and Y.Mercadier, ‘‘Numerical and Experiment Investigation on Supersonic Ejector”, International Journal of Heat and Fluid Flow, Vol. 26, pp.56-70, 2005. [18] Prediction of Supersonic Flow over Compression Corner,Journal of Applied Sciences,2011 [19] Z.M.Hu,R.S.Myong,T.H.Cho,’’Numerical study of shock interactions in viscous, hypersonic flows over double-wedge geometries’’,Shock waves,pp 671-676 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49035 | - |
| dc.description.abstract | 本研究基於氣體動力學的理論基礎,以商用軟體FLUENT求解超音速燃燒衝壓引擎燃燒室的流場問題。在紊流模型的選擇上使用與計算情況較符合的SST k-ω紊流模組計算。此模組在壁面與邊界層附近或是高速區的流場問題皆能得到好的結果。
本文先利用商用軟體FLUENT作驗證,以此做出的模擬與文獻實驗值相佐證,並討論其流場的物理情況,確定本文所使用的數值方法可適用於超音速燃燒流場後。再加以設計與改良目前的超音速燃燒衝壓引擎燃燒室,以多孔性圓柱燃燒器做為再引燃器,放入流場中使其火焰穩定,並增加出口的動能與推進力的表現,利用不同的入口初使條件與原始流場做比較。而設計的考量有圓柱對流場造成的阻力影響以及流速大小是否造成火焰的熄滅。以燃燒室入出口而言,燃燒室的出口壓力應大於噴嘴的出口壓力以維持流體的流動,且其溫度不應過高以免材料無法負荷其高溫。在考慮以上條件後,分析加入再引燃器後的溫定流場,確定其效能確實比原始的燃燒室更佳。 最後模擬暫態流場,在原始流場下會熄滅的情況因加入多孔性圓柱燃燒器做為再引燃器使得改良後的燃燒室能在極低的氫氣質量流率下再次被引燃,且有穩定的火焰存在。 | zh_TW |
| dc.description.abstract | The study is based on the theory of gas dynamics. We use the software FLUENT to simulate the flow field scramjet combustion chamber. We choosed SST k-ωas turbulence model, because it can get solution which is more close to real flow field.
The simulation procedure is verified against by two examples to ensure its accuracy, and we move on to design scramjet combustion chamber. Adding a porous cylinder as a burner into the flow field to improve its performance,including flame stabilization, kinetic energy and thrust improvement. Using different inlet condition to compare with the original flow field. We take some limitations into account, including the drag effect to the flow field, and flame extinction. The pressure at combustion chamber outlet should be higher than nozzle outlet for the purpose of continuous flow. The temperature at combustion chamber should avoid hot spot or it may cause damage on it. Considering the above conditions, we ensure that the performance of combustion chamber assisted by porous cylinder do better than the original one by checking the steady simulation. In the end, it could be shown that the combustion chamber assisted by porous cylinder could be ignited at extremely low hydrogen mass flow rate, which cannot be done on the original one. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:14:14Z (GMT). No. of bitstreams: 1 ntu-105-R03543076-1.pdf: 5132134 bytes, checksum: a746b583f5fb90c77d0d387ddec95d06 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 xiii 符號表 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 參考文獻 3 第二章 理論基礎 8 2.1 質量守恆方程式 8 2.2 動量守恆方程式 9 2.3 能量守恆方程式 10 2.4 氣體動力學理論 11 2.5 紊流模型 14 2.6 Flamelet燃燒化學模型 17 2.7 擴散火焰在超音速停滯面上的熄滅機制 21 第三章 數值方法 24 3.1 控制體積轉換之傳輸方程 24 3.2 Pressure-Based運算法則 24 3.3 收斂標準 26 第四章 超音速流場模擬以及驗證 27 4.1超音速燃燒衝壓引擎燃燒室模擬 27 4.2 網格收斂性測試 28 4.3 幾何外型與網格及邊界條件設定 30 4.4 二維超音速燃燒模擬驗證 32 4.5三維超音速燃燒衝壓引擎燃燒室模型 36 4.6 超音速流通過壓縮坡 45 第五章 燃燒室加入多孔性圓柱燃燒器之應用 50 5.1 多孔性圓柱燃燒器介紹 50 5.2 計算模型與過程 51 5.3 邊界條件 52 5.4 結果與比較 53 第六章 結論與展望 89 6.1 結論 89 6.2 未來展望 89 參考文獻 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 火焰熄滅 | zh_TW |
| dc.subject | 超音速燃燒衝壓引擎 | zh_TW |
| dc.subject | 多孔性圓柱燃燒器 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | SST k-ω紊流模型 | zh_TW |
| dc.subject | porous cylinder burne | en |
| dc.subject | scramjet | en |
| dc.subject | flame extinction | en |
| dc.subject | SST k-ω turbulent model | en |
| dc.subject | calculated fluid dynamics | en |
| dc.title | 超音速燃燒衝壓引擎燃燒室加入多孔性圓柱燃燒器之模擬與分析 | zh_TW |
| dc.title | Simulation and analysis of scramjet combustion chamber assisted by a porous cylindrical burner | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王興華,施聖洋,吳明勳,吳志勇 | |
| dc.subject.keyword | 超音速燃燒衝壓引擎,多孔性圓柱燃燒器,計算流體力學,SST k-ω紊流模型,火焰熄滅, | zh_TW |
| dc.subject.keyword | scramjet,porous cylinder burne,calculated fluid dynamics,SST k-ω turbulent model,flame extinction, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201603446 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
