Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭淑芬(Soofin Cheng)
dc.contributor.authorYan-Ru Sunen
dc.contributor.author孫彥儒zh_TW
dc.date.accessioned2021-06-15T11:13:48Z-
dc.date.available2021-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-21
dc.identifier.citationReferences
[1] J. Zhou, V. Wakchaure, P. Kraft, B. List, Angew. Chem. Int. Ed. 2008, 47, 7656-7658.
[2] P. Kraft, G. Frater, Chirality 2001, 13, 388-394.
[3] C. S. Sell, Chem Biodivers 2004, 1, 1899-1920.
[4] IUPAC, Compendium of Chemical Terminology 1997, 2nd ed.
[5] Nobelprize.org, The Nobel Prize in Chemistry 2001.
[6] H. G. Albrecht Berkessel, Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, 2005.
[7] B. List, Chem. Rev. 2007, 107, 5413-5415.
[8] P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43, 5138-5175.
[9] M. J. Gaunt, C. C. C. Johansson, A. McNally, N. T. Vo, Drug Discovery Today 2007, 12, 8-27.
[10] D. Enders, C. Grondal, M. R. Huttl, Angew. Chem. Int. Ed. 2007, 46, 1570-1581.
[11] P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2001, 40, 3726-3748.
[12] J. v. Liebig, Annalen der Chemie und Pharmacie 1860, 113, 246-267.
[13] W. Langenbeck, Angew. Chem. 1928, 41, 740-745.
[14] F. G. Fischer, A. Marschall, Berichte der deutschen chemischen Gesellschaft (A and B Series) 1931, 64, 2825-2827.
[15] H.-U. Blaser, B. Pugin, F. Spindler, J. Mol. Catal. A: Chem. 2005, 231, 1-20.
[16] B. Schafer, H. Bernard, G. Bulow, U. E. Lange, H. Mack, T. Pfeiffer, W. Seitz, T. Zierke, Synthesis 2004, 2004, 2367-2375.
[17] M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Kesseler, R. Sturmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824.
[18] H. Tye, P. J. Comina, J. Chem. Soc., Perkin Trans. 1 2001, 1729-1747.
[19] H. J. Federsel, Nat Rev Drug Discov 2005, 4, 685-697.
[20] D. W. MacMillan, Nature 2008, 455, 304-308.
[21] S. Armando Cordova, Sweden; Jonas Hafren, Stockholm, Sweden.
[22] B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc. 2000, 122, 2395-2396.
[23] Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh, T. Urushima, M. Shoji, Angew. Chem. Int. Ed. 2006, 45, 958-961.
[24] G. Zhong, J. Fan, C. F. Barbas, Tetrahedron Lett. 2004, 45, 5681-5684.
[25] U. Kazmaier, Angew. Chem. Int. Ed. 2005, 44, 2186-2188.
[26] A. Berkessel, B. Koch, J. Lex, Adv. Synth. Catal. 2004, 346, 1141-1146.
[27] A. B. Northrup, I. K. Mangion, F. Hettche, D. W. MacMillan, Angew. Chem. Int. Ed. 2004, 43, 2152-2154.
[28] P. Krattiger, R. Kovasy, J. D. Revell, S. Ivan, H. Wennemers, Organic Letters 2005, 7, 1101-1103.
[29] Z. Tang, Z. H. Yang, X. H. Chen, L. F. Cun, A. Q. Mi, Y. Z. Jiang, L. Z. Gong, Journal of the American Chemical Society 2005, 127, 9285-9289.
[30] E. Reyes, A. Cordova, Tetrahedron Lett. 2005, 46, 6605-6609.
[31] Z. Tang, F. Jiang, L. T. Yu, X. Cui, L. Z. Gong, A. Q. Mi, Y. Z. Jiang, Y. D. Wu, Journal of the American Chemical Society 2003, 125, 5262-5263.
[32] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243-4244.
[33] S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975-2978.
[34] J. M. Betancort, C. F. Barbas, Org. Lett. 2001, 3, 3737-3740.
[35] N. Mase, R. Thayumanavan, F. Tanaka, C. F. Barbas, 3rd, Organic Letters 2004, 6, 2527-2530.
[36] D. B. Ramachary, C. F. Barbas, 3rd, Organic Letters 2005, 7, 1577-1580.
[37] S. P. Mathew, H. Iwamura, D. G. Blackmond, Angew. Chem. Int. Ed. 2004, 43, 3317-3321.
[38] Y. Hayashi, J. Yamaguchi, K. Hibino, T. Sumiya, T. Urushima, M. Shoji, D. Hashizume, H. Koshino, Adv. Synth. Catal. 2004, 346, 1435-1439.
[39] N. S. Chowdari, J. T. Suri, C. F. Barbas, 3rd, Organic Letters 2004, 6, 2507-2510.
[40] Y. Hayashi, T. Urushima, M. Shoji, T. Uchimaru, I. Shiina, Adv. Synth. Catal. 2005, 347, 1595-1604.
[41] B. List, C. Castello, Synlett 2001, 2001, 1687-1689.
[42] A. Cordova, W. Zou, I. Ibrahem, E. Reyes, M. Engqvist, W. W. Liao, Chem. Commun. 2005, 3586-3588.
[43] I. Ibrahem, W. Zou, M. Engqvist, Y. Xu, A. Cordova, Chemistry 2005, 11, 7024-7029.
[44] M. Movassaghi, E. N. Jacobsen, Science 2002, 298, 1904-1905.
[45] B. List, Tetrahedron 2002, 58, 5573-5590.
[46] J. Seayad, B. List, Organic & Biomolecular Chemistry 2005, 3, 719-724.
[47] U. Eder, G. Sauer, R. Wiechert, Angew. Chem. Int. Ed. 1971, 10, 496-497.
[48] Z. G. Hajos, D. R. Parrish, The Journal of Organic Chemistry 1974, 39, 1615-1621.
[49] N. Y. Yoichi M. A. Yamada, Hiroaki Sasai, and Masakatsu Shibasaki, Angew. Chem. Int. Ed. 1997, 36, 1871-1873.
[50] Y. M. A. Yamada, M. Shibasaki, Tetrahedron Lett. 1998, 39, 5561-5564.
[51] N. Yoshikawa, Y. M. A. Yamada, J. Das, H. Sasai, M. Shibasaki, J. Am. Chem. Soc. 1999, 121, 4168-4178.
[52] H. E. Zimmerman, M. D. Traxler, J. Am. Chem. Soc. 1957, 79, 1920-1923.
[53] H. Sunden, I. Ibrahem, A. Cordova, Tetrahedron Lett. 2006, 47, 99-103.
[54] G. L. Zhao, Y. Xu, H. Sunden, L. Eriksson, M. Sayah, A. Cordova, Chemical Communications 2007, 734-735.
[55] S. Mitsumori, H. Zhang, P. Ha-Yeon Cheong, K. N. Houk, F. Tanaka, C. F. Barbas, J. Am. Chem. Soc. 2006, 128, 1040-1041.
[56] A. H. Henseler, C. Ayats, M. A. Pericas, Adv. Synth. Catal. 2014, 356, 1795-1802.
[57] C. Kouklovsky, Y. Langlois, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001.
[58] B. M. Trost, R. Radinov, E. M. Grenzer, J. Am. Chem. Soc. 1997, 119, 7879-7880.
[59] B. M. Trost, M. R. Machacek, A. Aponick, Acc. Chem. Res. 2006, 39, 747-760.
[60] P. Zhou, S. Luo, J. P. Cheng, Org Biomol Chem 2011, 9, 1784-1790.
[61] F. Peng, Z. Shao, J. Mol. Catal. A: Chem. 2008, 285, 1-13.
[62] L. W. Xu, J. Luo, Y. Lu, Chemical Communications 2009, 1807-1821.
[63] S. Luo, H. Xu, J. Li, L. Zhang, J. P. Cheng, Journal of the American Chemical Society 2007, 129, 3074-3075.
[64] S. Luo, H. Xu, L. Zhang, J. Li, J. P. Cheng, Organic Letters 2008, 10, 653-656.
[65] S. Luo, Y. Qiao, L. Zhang, J. Li, X. Li, J.-P. Cheng, The Journal of Organic Chemistry 2009, 74, 9521-9523.
[66] S. Hu, L. Zhang, J. Li, S. Luo, J.-P. Cheng, Eur. J. Org. Chem. 2011, 2011, 3347-3352.
[67] F.-Z. Peng, Z.-H. Shao, X.-W. Pu, H.-B. Zhang, Adv. Synth. Catal. 2008, 350, 2199-2204.
[68] L. Li, L.-W. Xu, Y.-D. Ju, G.-Q. Lai, Synth. Commun. 2009, 39, 764-774.
[69] Y. Liu, J. Wang, Q. Sun, R. Li, Tetrahedron Lett. 2011, 52, 3584-3587.
[70] B. L. Zheng, Q. Z. Liu, C. S. Guo, X. L. Wang, L. He, Org Biomol Chem 2007, 5, 2913-2915.
[71] S. Luo, H. Xu, J. Li, L. Zhang, J. P. Cheng, J. Am. Chem. Soc. 2007, 129, 3074-3075.
[72] S. S. Ramasastry, K. Albertshofer, N. Utsumi, F. Tanaka, C. F. Barbas, 3rd, Angew. Chem. Int. Ed. 2007, 46, 5572-5575.
[73] S. S. Ramasastry, H. Zhang, F. Tanaka, C. F. Barbas, 3rd, Journal of the American Chemical Society 2007, 129, 288-289.
[74] X. Ma, C.-S. Da, L. Yi, Y.-N. Jia, Q.-P. Guo, L.-P. Che, F.-C. Wu, J.-R. Wang, W.-P. Li, Tetrahedron: Asymmetry 2009, 20, 1419-1424.
[75] S. Luo, H. Xu, J. Li, L. Zhang, J. P. Cheng, J Am Chem Soc 2007, 129, 3074-3075.
[76] P. Judeinstein, C. Sanchez, J. Mater. Chem. 1996, 6, 511-525.
[77] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834-10843.
[78] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
[79] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 2006, 45, 3216-3251.
[80] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature 1994, 368, 317-321.
[81] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, Chem. Mater. 1994, 6, 1176-1191.
[82] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. 1999, 38, 56-77.
[83] A. Corma, Chem. Rev. 1997, 97, 2373-2420.
[84] H. H. P. Yiu, P. A. Wright, N. P. Botting, Microporous Mesoporous Mater. 2001, 44-45, 763-768.
[85] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548-552.
[86] J. Jarupatrakorn, T. D. Tilley, J. Am. Chem. Soc. 2002, 124, 8380-8388.
[87] J. J. E. Moreau, M. Wong Chi Man, Coord. Chem. Rev. 1998, 178–180, Part 2, 1073-1084.
[88] A. Adima, J. J. E. Moreau, M. W. C. Man, Chirality 2000, 12, 411-420.
[89] C. Bied, D. Gauthier, J. J. E. Moreau, M. W. Chi Man, J. Sol-Gel Sci. Technol. 2001, 20, 313-320.
[90] J. J. E. Moreau, L. Vellutini, M. W. Chi Man, C. Bied, J.-L. Bantignies, P. Dieudonne, J.-L. Sauvajol, J. Am. Chem. Soc. 2001, 123, 7957-7958.
[91] X. Elias, R. Pleixats, M. W. C. Man, J. J. E. Moreau, Adv. Synth. Catal. 2006, 348, 751-762.
[92] B. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, Chem. Mater. 1999, 11, 3302-3308.
[93] T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature 1999, 402, 867-871.
[94] A. Stein, B. J. Melde, R. C. Schroden, Adv. Mater. 2000, 12, 1403-1419.
[95] R. J. P. Corriu, A. Mehdi, C. Reye, J. Mater. Chem. 2005, 15, 4285.
[96] D. Jiang, Q. Yang, H. Wang, G. Zhu, J. Yang, C. Li, J. Catal. 2006, 239, 65-73.
[97] C. Li, H. Zhang, D. Jiang, Q. Yang, Chem. Commun. 2007, 547-558.
[98] A. Molnar, B. Rac, Curr. Org. Chem. 2006, 10, 1697-1726.
[99] K. K. Sharma, T. Asefa, Angew. Chem. Int. Ed. 2007, 46, 2879-2882.
[100] K. K. Sharma, A. Anan, R. P. Buckley, W. Ouellette, T. Asefa, J. Am. Chem. Soc. 2008, 130, 218-228.
[101] P. Yu, J. He, C. Guo, Chem. Commun. 2008, 2355-2357.
[102] D. Pini, A. Mandoli, S. Orlandi, P. Salvadori, Tetrahedron: Asymmetry 1999, 10, 3883-3886.
[103] K. Yu, Z. Gu, R. Ji, L.-L. Lou, S. Liu, Tetrahedron 2009, 65, 305-311.
[104] J. Yan, L. Wang, Chirality 2009, 21, 413-420.
[105] R. Abu-Reziq, D. Avnir, J. Blum, Angew. Chem. Int. Ed. 2002, 41, 4132-4134.
[106] J. M. Notestein, A. Katz, Chemistry 2006, 12, 3954-3965.
[107] A. Zamboulis, N. J. Rahier, M. Gehringer, X. Cattoen, G. Niel, C. Bied, J. J. E. Moreau, M. W. C. Man, Tetrahedron: Asymmetry 2009, 20, 2880-2885.
[108] E. L. Margelefsky, R. K. Zeidan, V. Dufaud, M. E. Davis, J. Am. Chem. Soc. 2007, 129, 13691-13697.
[109] E. L. Margelefsky, A. Bendjeriou, R. K. Zeidan, V. Dufaud, M. E. Davis, J. Am. Chem. Soc. 2008, 130, 13442-13449.
[110] F. Calderon, R. Fernandez, F. Sanchez, A. Fernandez-Mayoralas, Adv. Synth. Catal. 2005, 347, 1395-1403.
[111] E. G. Doyaguez, F. Calderon, F. Sanchez, A. Fernandez-Mayoralas, The Journal of Organic Chemistry 2007, 72, 9353-9356.
[112] M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev. 2008, 37, 1666-1688.
[113] D. Dhar, I. Beadham, S. Chandrasekaran, Journal of Chemical Sciences 2003, 115, 365-372.
[114] M. Benaglia, M. Cinquini, F. Cozzi, A. Puglisi, G. Celentano, Adv. Synth. Catal. 2002, 344, 533-542.
[115] D. Font, C. Jimeno, M. A. Pericas, Org. Lett. 2006, 8, 4653-4655.
[116] E. Adi Prasetyanto, S. C. Lee, S. M. Jeong, S. E. Park, Chem. Commun. 2008, 1995-1997.
[117] J. Gao, J. Liu, D. Jiang, B. Xiao, Q. Yang, J. Mol. Catal. A: Chem. 2009, 313, 79-87.
[118] Y.-B. Zhao, L.-W. Zhang, L.-Y. Wu, X. Zhong, R. Li, J.-T. Ma, Tetrahedron: Asymmetry 2008, 19, 1352-1355.
[119] P. Li, L. Wang, Y. Zhang, G. Wang, Tetrahedron 2008, 64, 7633-7638.
[120] C. Yeh., National Taiwan Univeristy 2013.
[121] S. Luo, X. Zheng, J.-P. Cheng, Chem. Commun. 2008, 5719-5721.
[122] M. Kaik, J. Gawroński, Tetrahedron: Asymmetry 2003, 14, 1559-1563.
[123] R. Pedrosa, J. M. Andres, R. Manzano, D. Roman, S. Tellez, Organic & Biomolecular Chemistry 2011, 9, 935-940.
[124] Z. Jiang, H. Yang, X. Han, J. Luo, M. W. Wong, Y. Lu, Organic & Biomolecular Chemistry 2010, 8, 1368-1377.
[125] H.-H. Li, Y.-H. He, Z. Guan, Catal. Commun. 2011, 12, 580-582.
[126] N. Mase, N. Noshiro, A. Mokuya, K. Takabe, Adv. Synth. Catal. 2009, 351, 2791-2796.
[127] N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas, J. Am. Chem. Soc. 2006, 128, 734-735.
[128] T. Kanemitsu, A. Umehara, M. Miyazaki, K. Nagata, T. Itoh, Eur. J. Org. Chem. 2011, 2011, 993-997.
[129] Y. Akira, N. Yoshinari, A. Kenichi, W. Manabu, K. Hiromi, Y. Hisashi, Bull. Chem. Soc. Jpn. 2001, 74, 1477-1484.
[130] J. C. Latham, D. A. Markov, H. S. S?rensen, D. J. Bornhop, Angew. Chem. Int. Ed. 2006, 45, 955-958.
[131] A. J. Pearson, S. Panda, Org. Lett. 2011, 13, 5548-5551.
[132] J. Xu, X. Fu, C. Wu, X. Hu, Tetrahedron: Asymmetry 2011, 22, 840-850.
[133] T. Miura, H. Kasuga, K. Imai, M. Ina, N. Tada, N. Imai, A. Itoh, Organic & Biomolecular Chemistry 2012, 10, 2209-2213.
[134] M. Angeloni, O. Piermatti, F. Pizzo, L. Vaccaro, Eur. J. Org. Chem. 2014, 2014, 1716-1726.
[135] C. Yeh, Y. R. Sun, S. J. Huang, Y. M. Tsai, S. Cheng, Chem. Commun. 2015, 51, 17116-17119.
[136] Y.-R. Luo, in Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007, pp. 455-480.
[137] P. Muller, Pure Appl. Chem. 1994, 66.
[138] F. R. Jensen, C. H. Bushweller, B. H. Beck, J. Am. Chem. Soc. 1969, 91, 344-351.
[139] L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96-103.
[140] K. Kandel, S. M. Althaus, C. Peeraphatdit, T. Kobayashi, B. G. Trewyn, M. Pruski, I. I. Slowing, J. Catal. 2012, 291, 63-68.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49018-
dc.description.abstract本篇論文將具有掌性選擇之(1R,2R)-trans-1,2-diaminocyclohexane固定在介孔材料SBA-15上而製備出一級-三級胺以及二級-三級胺兩種掌性選擇催化劑,以NMR、XRD、氮氣吸脫附、熱重分析等方式鑑定,並應用於不對稱Aldol反應。本實驗中,利用對硝基苯甲醛與環己酮作為反應物進行不對稱Aldol反應,比較兩種掌性選擇催化劑之活性,並與勻相觸媒比較。本研究亦探討不同取代基之苯甲醛衍生物在兩種觸媒上進行Aldol反應的差異與可能的反應過渡態。
本研究發現以對硝基苯甲醛與環己酮作為反應物的不對稱Aldol反應之中,SBA-15固定化之一級-三級胺觸媒可以在有水的環境下得到高達96%的轉化率以及很高的反式產物(anti-isomers)立體選擇性,遠超過二級-三級胺的50%轉化率。因此本論文主要以SBA-15固定化之一級-三級胺觸媒來進行反應物之間各種不同參數的探討,包含了利用數種質子與非質子溶劑測試最佳反應溶劑、作為溶劑的水量多寡對催化表現造成的影響、在各種不同溶劑中添加三氟乙酸帶來的高選擇性、一級-三級胺在無水的環境下若以微量的三氟乙酸做為添加劑會將立體選擇性逆轉,本逆轉現象也以重複回收使用觸媒驗證
在本研究的最後,我們也利用許多帶有不同程度之推、拉電子基與大小取代基之苯甲醛衍生物對Aldol反應過渡態的影響與其最後產生的產物分布進行探討,推論出取代基之位置、大小與推拉電子特性對一級-三級胺觸媒催化表現之影響;同時也將觸媒用在不同種酮類上推廣觸媒的應用範圍。
zh_TW
dc.description.abstractIn this work, (1R,2R)-trans-1,2-diaminocyclohexane was grafted on mesoporous SBA-15 through either thio-ene addition or by substitution to generate a enantio-selective primary-tertiary or secondary-tertiary amine catalyst, respectively. These chiral selective catalysts were characterized by NMR, X-ray diffraction, N2 adsorption-desorption isotherm, and thermogravimetric analysis. These two enantio-selective catalysts were tested in asymmetric aldol reaction with p-nitrobenzaldehyde and cyclohexanone. The catalytic activities were also compared with the homogeneous one. The effect of using benzaldehyde derivatives with different substituents in the aldol reactions was examined and the possible transition states were also proposed.
The experimental results demonstrated that a higher conversion up to 96% and higher stereo-selectivities were obtained in the presence of water over immobilized primary-tertiary amine catalyst than the 50% conversion over the secondary-tertiary amine catalyst. Hence, the primary-tertiary amine catalyst was the focus in this thesis for studying the effect of different parameters, including the protic and aprotic solvents, amount of water used as the solvent, and acid additives, alternation of stereo-selecticity with catalytic TFA under neat condition. The phenomenon of alternation was also examined by recycling test.
In the last part, the effect of various substituents on benzaldehyde of different electron-withdrawing/donating strengths and sizes on the transition state and distribution of products in catalytic asymmetric aldol reaction over SBA-15 immobilized primary-tertiary amine catalyst are discussed. Different ketones as another reactant were also investigated to extend the application of this catalyst.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:13:48Z (GMT). No. of bitstreams: 1
ntu-105-R03223162-1.pdf: 2579735 bytes, checksum: 63cdf74b4638c6351618c9a375808309 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
Chapter 1 Introduction 1
1.1 Importance of Asymmetry Compounds and Asymmetric Synthesis 1
1.2 Organocatalysis 3
1.2.1 History of Organocatalysis 3
1.2.2 Differences between Organocatalyst and Organometallic Catalyst 4
1.3 Asymmetric Organocatalysis 6
1.3.1 Using Proline and Its Derivatives as Organocatalysis in Asymmetric Synthesis 6
1.3.2 Using (1R,2R)-trans-1,2-Diaminocyclohexane Derivatives as Organocatalysts in Asymmetric Reactions. 9
1.4 Hybrid Materials 12
1.4.1 Mesoporous Silica Materials 12
1.4.2 Families of Hybrids 15
1.4.3 Post-functionalization of Inorganic or Hybrid Supports 17
1.4.4 Design of the Solids 21
1.5 Hybrid Materials Used as Heterogeneous Catalysts 23
1.6 Comparting heterogeneous catalyst and homogeneous catalysts 27
1.7 Purpose of this work 31
Chapter 2 Experimental 32
2.1 Chemicals 32
2.2 Synthesis of Rod-like Functionalized SBA-15 Mesoporous Silica 34
2.3 Synthesis of (1R,2R)-trans-N,N-diallyl-1,2-diaminocyclohexane 35
2.3.1 Synthesizing (1R,2R)-trans-N-phthaloyl-1,2-diaminocyclohexane (A1) 35
2.3.2 Synthesizing (1R,2R)-trans-N,N-diallyl-N’-phthaloyl-1,2-diaminocyclohexane (A2) 36
2.3.3 Synthesizing (1R,2R)-trans-N,N-diallyl-1,2-diaminocyclohexane (A3) 37
2.4 Anchoring (1R,2R)-trans-N,N-diallyl-1,2-diaminocyclohexane (A3) on SBA-15-10%SH 38
2.5 Anchoring (1R,2R)-trans-N,N-diallyl-1,2-diaminocyclohexane (A3) on SBA-15-10%Cl 38
2.6 General Procedure for the Aldol Reaction 39
2.7 Instruments 39
2.7.1 Powder X-ray Diffraction (XRD_ 39
2.7.2 Thermogravimetric Analysis (TGA) 39
2.7.3 Nitrogen physisorption 40
2.7.4 Scanning Electron Microscopy (SEM) 40
2.7.5 Solid State 13C CP-MAS NMR 40
2.7.6 Liquid Phase 1H and 13C NMR 41
2.7.7 High Performance Liquid Chromatography (HPLC) 41
2.7.8 Elemental Analysis 41
Chapter 3 Characterization of Functionalized SBA-15 Materials 42
3.1 Structural Determination of Diaminocyclohexane derivative A3 42
3.2 Charaterization of Functionalized SBA-15 Mesoporous Silica 47
Chapter 4 Catalytic Results 54
4.1 Amount of Catalysts Loaded in Reaction 54
4.2 Comparing the Catalytic Performance of Two Catalysts. 56
4.3 Solvent Effects on the Catalytic Performances 59
4.4 Influences of Using Different Amounts of Water 62
4.5 Trifluoroacetic Acid as Additive in the Reaction 64
4.6 Importance of Silanol Group on the Silica Surface 69
4.7 Substituent Effects 71
4.8 Recycling Tests 78
4.9 Comparing Different Catalysts Performance in Aldol Reaction 80
Chapter 5 Conclusion 83
Reference 84
dc.language.isoen
dc.title"以(1R,2R)-反式-1,2-二胺基環己烷衍生物官能基化介孔材料SBA-15催化不對稱Aldol反應之應用"zh_TW
dc.titleAsymmetric Catalysis Applications of (1R,2R)-trans-1,2-Diaminocyclohexane Derivatives Functionalized SBA-15 Mesoporous Silicaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡蘊明,詹益慈
dc.subject.keyword不對稱催化,有機催化,介孔材料,zh_TW
dc.subject.keyworddirect aldol reaction,Organocatalysis,SBA-15,mesoporous silica,heterogeneous catalysis,asymmetric addition,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201603223
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved