Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49000
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠
dc.contributor.authorNian-Ting Lien
dc.contributor.author李念庭zh_TW
dc.date.accessioned2021-06-15T11:13:22Z-
dc.date.available2026-12-31
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-21
dc.identifier.citation1. Klauk, H., Organic thin-film transistors. Chemical Society Reviews 2010, 39, 2643-2666.
2. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49, 1210-1212.
3. Bao, Z.; Dodabalapur, A.; Lovinger, A. J., Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters 1996, 69, 4108-4110.
4. Huitema, H. E. A.; Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.; Cantatore, E.; Herwig, P. T.; van Breemen, A. J. J. M.; de Leeuw, D. M., Plastic transistors in active-matrix displays. Nature 2001, 414, 599-599.
5. Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M., Electronic paper: Flexible active-matrix electronic ink display. Nature 2003, 423, 136-136.
6. 劉曜彰、曾美榕, OLED照明光源發展現況. 工業材料雜誌 2011, 293.
7. Facchetti, A., Semiconductors for organic transistors. Materials Today 2007, 10, 28-37.
8. Zaumseil, J.; Sirringhaus, H., Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chemical Reviews 2007, 107, 1296-1323.
9. Possanner, S. K.; Zojer, K.; Pacher, P.; Zojer, E.; Schürrer, F., Threshold Voltage Shifts in Organic Thin-Film Transistors Due to Self-Assembled Monolayers at the Dielectric Surface. Advanced Functional Materials 2009, 19, 958-967.
10. Kumar, B.; Kaushik, B. K.; Negi, Y. S., Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review. Polymer Reviews 2014, 54, 33-111.
11. Reséndiz, L.; Estrada, M.; Cerdeira, A.; Iñiguez, B.; Deen, M. J., Effect of active layer thickness on the electrical characteristics of polymer thin film transistors. Organic Electronics 2010, 11, 1920-1927.
12. Li, F.; Nathan, A.; Wu, Y.; Ong, B. S., Organic Thin Film Transistor Integration: A Hybrid Approach. John Wiley & Sons2011.
13. Kumar, B.; Mittal, P.; Negi, Y. S.; Kaushik, B. K., Top and Bottom Gate Polymeric Thin Film Transistor Analysis through Two Dimensional Numerical Device Simulation. In Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011: Volume 2, Deep, K.; Nagar, A.; Pant, M.; Bansal, C. J., Eds. Springer India: India, 2012; pp 855-864.
14. Lee, W.; Park, Y., Organic Semiconductor/Insulator Polymer Blends for High-Performance Organic Transistors. Polymers 2014, 6, 1057.
15. Huang, T.-S.; Su, Y.-K.; Wang, P.-C., Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer. Applied Physics Letters 2007, 91, 092116.
16. Sundberg, P.; Karppinen, M., Organic and inorganic–organic thin film structures by molecular layer deposition: A review. Beilstein journal of nanotechnology 2014, 5, 1104-1136.
17. Kato, Y.; Iba, S.; Teramoto, R.; Sekitani, T.; Someya, T.; Kawaguchi, H.; Sakurai, T., High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Applied Physics Letters 2004, 84, 3789-3791.
18. Unni, K. N. N.; Sylvie, D.-S.; Jean-Michel, N., Improved performance of pentacene field-effect transistors using a polyimide gate dielectric layer. Journal of Physics D: Applied Physics 2005, 38, 1148.
19. Fukuda, K.; Sekitani, T.; Someya, T., Effects of annealing on electronic and structural characteristics of pentacene thin-film transistors on polyimide gate dielectrics. Applied Physics Letters 2009, 95, 023302.
20. Lijuan, Z.; Weihua, G.; Liwei, S.; Ming, L.; Ge, L., Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric. Journal of Physics D: Applied Physics 2008, 41, 135111.
21. Ahn, T.; Kim, J. W.; Choi, Y.; Yi, M. H., Hybridization of a low-temperature processable polyimide gate insulator for high performance pentacene thin-film transistors. Organic Electronics 2008, 9, 711-720.
22. Zhao, X. Y.; Liu, H. J., Review of polymer materials with low dielectric constant. Polymer International 2010, 59, 597-606.
23. Yildirim, F. A.; Schliewe, R. R.; Bauhofer, W.; Meixner, R. M.; Goebel, H.; Krautschneider, W., Gate insulators and interface effects in organic thin-film transistors. Organic Electronics 2008, 9, 70-76.
24. Jung, C.-H.; Cho, H.; Lee, S.-Y.; Hong, Y.; Lee, C.; Hwang, D.-H., Photo-curable epoxy functionalized cyclotetrasiloxane as a gate dielectric for organic thin film transistors. Current Applied Physics 2010, 10, 1132-1136.
25. Kim, C. H.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y.; Horowitz, G., Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate insulator. The European Physical Journal - Applied Physics 2012, 57, 20201 (6 pages).
26. Qi, L.; Lee, B. I.; Chen, S.; Samuels, W. D.; Exarhos, G. J., High‐Dielectric‐Constant Silver–Epoxy Composites as Embedded Dielectrics. Advanced Materials 2005, 17, 1777-1781.
27. Zhao, H.; Li, R. K., Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing 2008, 39, 602-611.
28. Cao, Q.; Xia, M. G.; Shim, M.; Rogers, J. A., Bilayer Organic–Inorganic Gate Dielectrics for High‐Performance, Low‐Voltage, Single‐Walled Carbon Nanotube Thin‐Film Transistors, Complementary Logic Gates, and p–n Diodes on Plastic Substrates. Advanced Functional Materials 2006, 16, 2355-2362.
29. Tewari, A.; Gandla, S.; Pininti, A. R.; Karuppasamy, K.; Böhm, S.; Bhattacharyya, A. R.; McNeill, C. R.; Gupta, D., High-mobility and low-operating voltage organic thin film transistor with epoxy based siloxane binder as the gate dielectric. Applied Physics Letters 2015, 107, 103302.
30. Sirringhaus, H., Device physics of solution‐processed organic field‐effect transistors. Advanced Materials 2005, 17, 2411-2425.
31. Sethuraman, K.; Ochiai, S.; Kojima, K.; Mizutani, T., Performance of poly(3-hexylthiophene) organic field-effect transistors on cross-linked poly(4-vinyl phenol) dielectric layer and solvent effects. Applied Physics Letters 2008, 92, 183302.
32. Reese, C.; Roberts, M.; Ling, M.-m.; Bao, Z., Organic thin film transistors. Materials Today 2004, 7, 20-27.
33. Bao, Z., Organic materials for thin film transistors. Material Matters 2007, 3.
34. Zhao, Y.; Guo, Y.; Liu, Y., 25th Anniversary Article: Recent Advances in n‐Type and Ambipolar Organic Field‐Effect Transistors. Advanced Materials 2013, 25, 5372-5391.
35. Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y., Solution-Processible n-Channel Organic Field-Effect Transistors Based on Dicyanomethylene-Substituted Terthienoquinoid Derivative. Journal of the American Chemical Society 2007, 129, 11684-11685.
36. Ie, Y.; Nishida, K.; Karakawa, M.; Tada, H.; Aso, Y., Electron-Transporting Oligothiophenes Containing Dicyanomethylene-Substituted Cyclopenta [b] thiophene: Chemical Tuning for Air Stability in OFETs. The Journal of organic chemistry 2011, 76, 6604-6610.
37. Nishida, J.-i.; Deno, H.; Ichimura, S.; Nakagawa, T.; Yamashita, Y., Preparation, physical properties and n-type FET characteristics of substituted diindenopyrazinediones and bis (dicyanomethylene) derivatives. Journal of Materials Chemistry 2012, 22, 4483-4490.
38. Zhao, X.; Wen, Y.; Ren, L.; Ma, L.; Liu, Y.; Zhan, X., An acceptor‐acceptor conjugated copolymer based on perylene diimide for high mobility n‐channel transistor in air. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 4266-4271.
39. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A., A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679-686.
40. Horowitz, G.; Peng, X.; Fichou, D.; Garnier, F., Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors. Synth Met 1992, 51, 419-424.
41. Schön, J. H.; Kloc, C.; Batlogg, B., On the intrinsic limits of pentacene field-effect transistors. Organic Electronics 2000, 1, 57-64.
42. Qiu, L.; Xu, Q.; Lee, W. H.; Wang, X.; Kang, B.; Lv, G.; Cho, K., Organic thin-film transistors with a photo-patternable semiconducting polymer blend. Journal of Materials Chemistry 2011, 21, 15637-15642.
43. Katz, H. E.; Lovinger, A. J.; Laquindanum, J. G., α,ω-Dihexylquaterthiophene:  A Second Thin Film Single-Crystal Organic Semiconductor. Chemistry of Materials 1998, 10, 457-459.
44. Tian, H.; Wang, J.; Shi, J.; Yan, D.; Wang, L.; Geng, Y.; Wang, F., Novel thiophene-aryl co-oligomers for organic thin film transistors. Journal of Materials Chemistry 2005, 15, 3026-3033.
45. Lutsyk, P.; Janus, K.; Mikołajczyk, M.; Sworakowski, J.; Boratyński, B.; Tłaczała, M., Long-lived persistent currents in poly(3-octylthiophene) thin film transistors. Organic Electronics 2010, 11, 490-497.
46. Abthagir, P. S.; Ha, Y.-G.; You, E.-A.; Jeong, S.-H.; Seo, H.-S.; Choi, J.-H., Studies of Tetracene- and Pentacene-Based Organic Thin-Film Transistors Fabricated by the Neutral Cluster Beam Deposition Method. The Journal of Physical Chemistry B 2005, 109, 23918-23924.
47. Jung, S.-W.; Yoon, S.-M.; Kang, S. Y.; You, I.-K.; Koo, J. B.; Baeg, K.-J.; Noh, Y.-Y., Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics. Current Applied Physics 2011, 11, S213-S218.
48. Min, J.; Peng, B.; Wen, Y.; Zhang, Z.-G.; Zhang, M.; Zhang, J.; Xie, Q.; Liu, Y.; Li, Y., Low bandgap copolymer of 1,4-diketopyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene: Synthesis and applications in polymer solar cells and field-effect transistors. Synthetic Metals 2011, 161, 1832-1837.
49. Halik, M.; Klauk, H.; Zschieschang, U.; Kriem, T.; Schmid, G.; Radlik, W.; Wussow, K., Fully patterned all-organic thin film transistors. Applied Physics Letters 2002, 81, 289-291.
50. Fukuda, H.; Ise, M.; Kogure, T.; Takano, N., Gas sensors based on poly-3-hexylthiophene thin-film transistors. Thin Solid Films 2004, 464–465, 441-444.
51. Jia, H. P.; Gowrisanker, S.; Pant, G. K.; Wallace, R. M.; Gnade, B. E., Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties. Journal of Vacuum Science & Technology A 2006, 24, 1228-1232.
52. Chen, Y.; Shih, I., Fabrication of vertical channel top contact organic thin film transistors. Organic Electronics 2007, 8, 655-661.
53. Xiao, X.; Hu, Z.; Wang, Z.; He, T., Study on the Single Crystals of Poly(3-octylthiophene) Induced by Solvent-Vapor Annealing. The Journal of Physical Chemistry B 2009, 113, 14604-14610.
54. Leufgen, M.; Bass, U.; Muck, T.; Borzenko, T.; Schmidt, G.; Geurts, J.; Wagner, V.; Molenkamp, L. W., Optimized sub-micron organic thin-film transistors: the influence of contacts and oxide thickness. Synthetic Metals 2004, 146, 341-345.
55. Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T.; Hegde, S.; Purushothaman, S., Field-effect transistors comprising molecular beam deposited α,ω-di-hexyl-hexathienylene and polymeric insulator. Synthetic Metals 1998, 92, 47-52.
56. Torsi, L.; Marinelli, F.; Angione, M. D.; Dell’Aquila, A.; Cioffi, N.; Giglio, E. D.; Sabbatini, L., Contact effects in organic thin-film transistor sensors. Organic Electronics 2009, 10, 233-239.
57. Bürgi, L.; Richards, T. J.; Friend, R. H.; Sirringhaus, H., Close look at charge carrier injection in polymer field-effect transistors. Journal of Applied Physics 2003, 94, 6129-6137.
58. Li, Y.; Singh, S. P.; Sonar, P., A High Mobility P-Type DPP-Thieno[3,2-b]thiophene Copolymer for Organic Thin-Film Transistors. Advanced Materials 2010, 22, 4862-4866.
59. Qi, Q.; Yu, A.; Jiang, P.; Jiang, C., Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes. Applied Surface Science 2009, 255, 5096-5099.
60. Wang, C. H.; Hsieh, C. Y.; Hwang, J. C., Flexible Organic Thin‐Film Transistors with Silk Fibroin as the Gate Dielectric. Advanced Materials 2011, 23, 1630-1634.
61. Mohebbi, A. R.; Yuen, J.; Fan, J.; Munoz, C.; Wang, M. f.; Shirazi, R. S.; Seifter, J.; Wudl, F., Emeraldicene as an Acceptor Moiety: Balanced-Mobility, Ambipolar, Organic Thin-Film Transistors. Advanced Materials 2011, 23, 4644-4648.
62. Sonar, P.; Foong, T. R. B.; Singh, S. P.; Li, Y.; Dodabalapur, A., A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chemical Communications 2012, 48, 8383-8385.
63. Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.; Winnewisser, C., High-Mobility Ambipolar Near-Infrared Light-Emitting Polymer Field-Effect Transistors. Advanced Materials 2008, 20, 2217-2224.
64. Głowacki, E. D.; Leonat, L.; Voss, G.; Bodea, M.-A.; Bozkurt, Z.; Ramil, A. M.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N. S., Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple. AIP Advances 2011, 1, 042132.
65. Lin, H.-W.; Lee, W.-Y.; Chen, W.-C., Selenophene-DPP donor-acceptor conjugated polymer for high performance ambipolar field effect transistor and nonvolatile memory applications. Journal of Materials Chemistry 2012, 22, 2120-2128.
66. Fan, J.; Yuen, J. D.; Wang, M.; Seifter, J.; Seo, J.-H.; Mohebbi, A. R.; Zakhidov, D.; Heeger, A.; Wudl, F., High-Performance Ambipolar Transistors and Inverters from an Ultralow Bandgap Polymer. Advanced Materials 2012, 24, 2186-2190.
67. Irimia-Vladu, M.; Głowacki, E. D.; Troshin, P. A.; Schwabegger, G.; Leonat, L.; Susarova, D. K.; Krystal, O.; Ullah, M.; Kanbur, Y.; Bodea, M. A.; Razumov, V. F.; Sitter, H.; Bauer, S.; Sariciftci, N. S., Indigo - A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits. Advanced Materials 2012, 24, 375-380.
68. Chou, Y.-H.; Chang, H.-C.; Liu, C.-L.; Chen, W.-C., Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polymer Chemistry 2015, 6, 341-352.
69. Chou, Y.-H.; You, N.-H.; Kurosawa, T.; Lee, W.-Y.; Higashihara, T.; Ueda, M.; Chen, W.-C., Thiophene and Selenophene Donor–Acceptor Polyimides as Polymer Electrets for Nonvolatile Transistor Memory Devices. Macromolecules 2012, 45, 6946-6956.
70. Chen, F.-C.; Liao, C.-H., Improved Air Stability of N-channel Organic Thin-film Transistors with Surface Modification on Gate Dielectrics. Applied Physics Letters 2008, 93, 103310.
71. Wen, Y.; Liu, Y.; Di, C.-a.; Wang, Y.; Sun, X.; Guo, Y.; Zheng, J.; Wu, W.; Ye, S.; Yu, G., Improvements in Stability and Performance of N,N′-Dialkyl Perylene Diimide-Based N-Type Thin-Film Transistors. Advanced Materials 2009, 21, 1631-1635.
72. Chiu, Y.-C.; Liu, C.-L.; Lee, W.-Y.; Chen, Y.; Kakuchi, T.; Chen, W.-C., Multilevel nonvolatile transistor memories using a star-shaped poly((4-diphenylamino)benzyl methacrylate) gate electret. NPG Asia Mater 2013, 5, e35.
73. Li, L.; Tang, Q.; Li, H.; Yang, X.; Hu, W.; Song, Y.; Shuai, Z.; Xu, W.; Liu, Y.; Zhu, D., An Ultra Closely π-Stacked Organic Semiconductor for High Performance Field-Effect Transistors. Advanced Materials 2007, 19, 2613-2617.
74. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L., Charge Transport in Organic Semiconductors. Chemical reviews 2007, 107, 926-952.
75. Hsu, Y.-Y.; Yeh, S.-C.; Lin, S.-H.; Chen, C.-T.; Tung, S.-H.; Jeng, R.-J., Dendrons with urea/malonamide linkages for gate insulators of n-channel organic thin film transistors. Reactive and Functional Polymers 2016.
76. Wang, T. S.; Yeh, J. F.; Shau, M. D., Syntheses, structure, reactivity, and thermal properties of epoxy–imide resin cured by phosphorylated triamine. Journal of applied polymer science 1996, 59, 215-225.
77. Yang, S. Y.; Shin, K.; Park, C. E., The effect of gate‐dielectric surface energy on pentacene morphology and organic field‐effect transistor characteristics. Advanced functional materials 2005, 15, 1806-1814.
78. Ahmad, Z., Polymeric dielectric materials. Dielectric Material 2012, 3-26.
79. Aghamohammadi, M.; Rödel, R.; Zschieschang, U.; Ocal, C.; Boschker, H.; Weitz, R. T.; Barrena, E.; Klauk, H., Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects. ACS applied materials & interfaces 2015, 7, 22775-22785.
80. Dimitrakopoulos, C. D.; Malenfant, P. R., Organic thin film transistors for large area electronics. Advanced Materials 2002, 14, 99-117.
81. Knipp, D.; Street, R. A.; Völkel, A.; Ho, J., Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. Journal of Applied Physics 2003, 93, 347-355.
82. He, T.; Stolte, M.; Burschka, C.; Hansen, N. H.; Musiol, T.; Kälblein, D.; Pflaum, J.; Tao, X.; Brill, J.; Würthner, F., Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat Commun 2015, 6.
83. Chou, W.; Cheng, H., Advanced fabrication of organic thin-film transistors. SPIE Newsroom 2008.
84. Horowitz, G.; Hajlaoui, M. E., Grain size dependent mobility in polycrystalline organic field-effect transistors. Synthetic Metals 2001, 122, 185-189.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49000-
dc.description.abstract在本研究中,合成含有醯亞胺鍵結之環氧樹脂交聯高分子DIDE-TAPA以及DIDE-DO3-TAPA應用在有機場效薄膜電晶體 (OTFTs) 之高分子層。使用N型半導體NDI-C7F9作為半導體層材料,由於以N行半導體中的NDI衍生物在大氣中擁有良好的穩定性,因此所做成的N型通道之OTFTs元件,可在大氣下製備並量測。此外,還使用P行半導體Pentacene作為半導體材料以做比較。本研究中所合成的含有醯亞胺鍵結之環氧樹脂交聯高分子應用於兩元件之平均載子遷移率(Mobility)約為10-2~10-3 cm2V-1s-1,開關電流比為102~103。而因使用了具有儲存電荷能力的三苯胺結構做為交聯劑,可使得所做出的元件具有記憶效應,以DIDE-TAPA作為高分子層且半導體材料為NDI-C7F9時,其Memory Window 為60V,而另外添加具有D-A結構以增加記憶體效應之DO3的對照組也表現Memory Window 為70V。此外,研究中利用原子力顯微鏡以及掃描式電子顯微鏡偵測半導體層的表面形貌,並以X光繞射觀察半導體小分子在不同介電層改質之基板上的排列及堆積密度,此外接觸角、介電常數、熱性質等分析也在此研究中被進行探討。zh_TW
dc.description.abstractThis work presents synthesis and characterization of different imide-epoxy polymers, namely DIDE-TAPA and DIDE-DO3 to be used as polymeric layer in organic thin film transistors. NDI-C7F9, a tetracarboxylic diimide derivative, was used as n-type semiconducting layer of OTFT due to its good stability in air. In addition, pentacene, a widely used p-type semiconductor, was also used as a semiconducting layer. Organic thin film transistors were fabricated by spinning the imide-epoxy polymers as dielectric layer/polymeric layer on Si/SiO2 substrates, and then depositing the semiconducting layers in vacuum.
The electron mobility and on/off ratio of all devices measured in the air were about 10-2~10-3 cm2V-1s-1 and 102~103, respectively. Using triaminophenylamine (TAPA) as a crosslinker could result in memory effect. The device, using NDI-C7F9 as semiconductor layer and DIDE-TAPA as polymeric layer, exhibited a memory window of approximately 60V. Moreover, the introduction of polymers with D-A structure as the polymeric layer could possibly enhance the memory effect of the OTFT devices. The devices using NDI-C7F9 as semiconductor layer and DIDE-DO3-TAPA as polymeric layer exhibited a memory window of approximately 70V.
Furthermore, better film quality would favor the ordered arrangement of semiconductors. Hence the contact angle, dielectric constant and thermal stabilities of dielectric layer such as were also studied in this work. Moreover, the investigation of the morphological influence on semiconducting layers was performed by atomic force microscopy (AFM) scanning electron microscope (SEM) and X-ray diffraction (XRD)
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:13:22Z (GMT). No. of bitstreams: 1
ntu-105-R03549001-1.pdf: 5760577 bytes, checksum: 122ffa7540b3bc3279b0724b3b194f81 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口委審定書 I
致謝 II
中文摘要 III
Abstract IV
第一章 緒論 1
1.1 前言 1
1.2 有機薄膜電晶體之簡介 2
1.3 有機薄膜電晶體之重要參數 6
1.3.1 載子遷移率(Charge Carrier Mobility, μ) 6
1.3.2 起始電壓(Threshold Voltage, VTH) 6
1.3.3 開關電流比(On/off Current Ratio, Ion/Ioff) 6
第二章 文獻回顧與研究動機 7
2.1 有機薄膜電晶體基本製作方式 7
2.2 介電層材料 9
2.2.1 介電層材料聚甲基丙烯酸甲酯 (Polymethylmethacrylate (PMMA)) 10
2.2.2 介電層材料聚醯亞胺 (Polyimide, PI) 11
2.2.3 介電層材料環氧樹脂 (Epoxy resin) 13
2.2.4 交聯型介電層 15
2.3 半導體層材料 16
2.3.1 N型半導體材料(N-Type Semiconductor) 16
2.3.2 P型半導體材料(P-Type Semiconductor) 18
2.3.3 雙極性半導體材料(Ambipolar Semiconductor) 20
2.4 有機場效電晶體應用於記憶體 22
2.5 研究動機 26
第三章 實驗與合成 27
3.1 藥品與溶劑 27
3.2 儀器介紹 29
3.3 實驗流程 31
3.3.1 具醯亞胺之雙環氧小分子Diimidediepoxide (DIDE) 之製備 32
3.3.2 三胺小分子4,4’,4’’-triaminophenylamine (TAPA) 之製備 33
3.3.3 交聯高分子DIDE-TAPA之製備 33
3.3.4 交聯高分子 DIDE-DO3-TAPA 之製備 34
3.3.5 有機薄膜電晶體元件之製備 34
第四章 結果與討論 36
4.1 小分子與高分子之鑑定 36
4.1.1 DIDE之製備與鑑定 36
4.1.2 DIDE-TAPA之製備與鑑定 37
4.1.3 DIDE-DO3-TAPA之製備與鑑定 40
4.2 接觸角及表面能分析 43
4.3 交聯高分子介電常數測定 45
4.4 表面形貌分析-原子力顯微鏡 47
4.5表面形貌分析-掃描式電子顯微鏡 51
4.6 X光繞射分析 52
4.7有機薄膜電晶體之電性分析 53
第五章 結論 60
第六章參考文獻 61
dc.language.isozh-TW
dc.title具醯亞胺鍵結之環氧樹脂高分子做為光電材料的特性探討與鑑定zh_TW
dc.titleImide-epoxy Polymers: Synthesis, Characterization and Opto-electronicsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳錦地,劉英麟,李榮和,駱俊良
dc.subject.keyword有機場效薄膜電晶體,環氧樹脂,醯亞胺,介電層,記憶效應,zh_TW
dc.subject.keywordorganic thin film transistors (OTFTs),imide-epoxy,dielectric layer,memory effect,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201603313
dc.rights.note有償授權
dc.date.accepted2016-08-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved