Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48987
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平(Chih-Ping Wei)
dc.contributor.authorSyu-Lun Gaoen
dc.contributor.author高勗倫zh_TW
dc.date.accessioned2021-06-15T11:13:04Z-
dc.date.available2022-08-13
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citationAaker, J. L. (1997). Dimensions of brand personality. Journal of Marketing Research, 34(3):347–356.
Aaker, J. L., Benet-Mart´ınez, V., and Garolera, J. (2001). Consumption symbols as carriers of culture: A study of Japanese and Spanish brand personality constructs. Journal of Personality and Social Psychology, 81(3):492–508.
Ang, S. H. and Lim, E. A. C. (2006). The influence of metaphors and product type on brand personality perceptions and attitudes. Journal of Advertising, 35(2):39–53.
Arun Kumar, R. S. (1998). Marketing Management. Atlantic Publishers Distri.
Carlson, D. B., Donavan, T. D., and Cumiskey, J. K. (2009). Consumer-brand relationships in sport: brand personality and identification. International Journal of Retail Distribution Management, 37(4):370–384.
Culotta, A. and Cutler, J. (2016). Mining brand perceptions from twitter social networks. Marketing Science, 35(3):343–362.
Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Ekinci, Y. and Hosany, S. (2006). Destination personality: An application of brand personality to tourism destinations. Journal of Travel Research, 45(2):127–139.
Fang, X. and Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1):5.
Farnadi, G., Sitaraman, G., Sushmita, S., Celli, F., Kosinski, M., Stillwell, D., Davalos, S., Moens, M.-F., and De Cock, M. (2016). Computational personality recognition in social media. User Modeling and User-Adapted Interaction, 26(2):109–142.
Fournier, S. (1994). A consumer-brand relationship framework for strategic brand management. Unpublished PhD Thesis. University of Florida.
Fournier, S. (1998). Consumers and their brands: Developing relationship theory in consumer research. Journal of Consumer Research, 24(4):343–373.
Gao, Z., Feng, A., Song, X., and Wu, X. (2019). Target-dependent sentiment classification with BERT. IEEE Access, 7:154290–154299.
Gensler, S., Volckner, F., Egger, M., Fischbach, K., and Schoder, D. (2015). Listen to your customers: Insights into brand image using online consumer-generated product reviews. International Journal of Electronic Commerce, 20(1):112–141.
Grohmann, B. (2009). Gender dimensions of brand personality. Journal of Marketing Research, 46(1):105–119.
Hu, Y., Xu, A., Hong, Y., Gal, D., Sinha, V., and Akkiraju, R. (2019). Generating business intelligence through social media analytics: Measuring brand personality with consumer-, employee-, and firm-generated content. Journal of Management Information Systems, 36(3):893–930.
Hung, L. (2018). Using user-generated content for predicting customer-perceived brand personality. Unpublished Master’s Thesis. Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC.
Kapferer, J. (2012). The New Strategic Brand Management: Advanced Insights and Strategic Thinking. Kogan Page Publishers.
Liu, X., Burns, A. C., and Hou, Y. (2017). An investigation of brand-related user-generated content on twitter. Journal of Advertising, 46(2):236–247.
Maehle, N., Otnes, C., and Supphellen, M. (2011). Consumers’ perceptions of the dimensions of brand personality. Journal of Consumer Behaviour, 10(5):290–303.
Mairesse, F., Walker, M. A., Mehl, M. R., and Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research, 30:457–500.
Martineau, P. (1958). The Personality of the Retail Store. Graduate School of Business Administration, Harvard University.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Munikar, M., Shakya, S., and Shrestha, A. (2019). Fine-grained sentiment classification using BERT. In 2019 Artificial Intelligence for Transforming Business and Society (AITB), volume 1, pages 1–5.
Pennebaker, J. W., Chung, C. K., Ireland, M., Gonzales, A., and Booth, R. J. (2007). Linguistic inquiry and word count: LIWC2007. Environment Planning D: Society Space, 1(2):163–180.
Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.
Ranfagni, S., Camiciottoli, B. C., and Faraoni, M. (2016). How to measure alignment in perceptions of brand personality within online communities: Interdisciplinary insights. Journal of Interactive Marketing, 35:70 – 85.
Ross, S. (2007). Assessing the use of the brand personality scale in team sport. International Journal of Sport Management and Marketing, 3:23–38.
Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M. E. P., and Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLOS ONE, 8(9):1–16.
Sirgy, M. J. (1982). Self-concept in consumer behavior: A critical review. Journal of Consumer Research, 9(3):287–300.
Sumner, C., Byers, A., Boochever, R., and Park, G. J. (2012). Predicting dark triad personality traits from twitter usage and a linguistic analysis of tweets. In Proceedings of 2012 11th International Conference on Machine Learning and Applications, volume 2, pages 386–393.
Sung, Y., Choi, S. M., Ahn, H., and Song, Y.-A. (2015). Dimensions of luxury brand personality: Scale development and validation. Psychology Marketing, 32(1):121–132.
Supphellen, M. and Grønhaug, K. (2003). Building foreign brand personalities in Russia: The moderating effect of consumer ethnocentrism. International Journal of Advertising, 22(2):203–226.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008.
Venable, B. T., Rose, G. M., Bush, V. D., and Gilbert, F. W. (2005). The role of brand personality in charitable giving: An assessment and validation. Journal of the Academy of Marketing Science, 33(3):295–312.
Xu, A., Liu, H., Gou, L., Akkiraju, R., Mahmud, J., Sinha, V., Hu, Y., and Qiao, M. (2016). Predicting perceived brand personality with social media. In Proceedings of Tenth International AAAI Conference on Web and Social Media, pages 436–445.
Yarullin, R. and Serdyukov, P. (2019). BERT for sequence-to-sequence multi-label text classification. arXiv, abs/1706.03762.
Zeng, D., Chen, H., Lusch, R., and Li, S. (2010). Social media analytics and intelligence. IEEE Intelligent Systems, 25(6):13–16.
Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S. (2015). Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE International Conference on Computer Vision, pages 19–27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48987-
dc.description.abstract建立強大而與眾不同的品牌是企業的重要目標之一,它能夠幫助企業提升其績效和客戶忠誠度。在行銷實務上,評估品牌認知度最有效的框架是品牌個性。品牌個性被定義為「一組與品牌聯想在一起的人格特質」,它反映了消費者對企業或組織的看法和感受。過去研究發現,建立良好的品牌個性可以帶來消費者的正向反應。然而,消費者感知的品牌個性往往與公司預期的品牌個性不同,因此企業需要經常地衡量消費者所感知的品牌個性。過去經常以問卷或訪問的形式來評估消費者感受的品牌個性,但這類方法耗時費力,且無法長期監控品牌個性的變化。
隨著社交媒體的普及和廣泛使用,開始有行銷研究將社群媒體資料應用在品牌相關的研究。因此,本研究旨在透過社群媒體資料來衡量消費者感知的品牌個性,我們開發了兩階段的品牌個性預測模型,也採用 BERT 預訓練語言模型從推特資料中萃取嵌入作為特徵,同時考慮品牌個性之間的可能關係,再利用機器學習模型來預測和衡量消費者感知的品牌個性。而實驗結果顯示我們的兩階段預測模型優於基準方法,且說明了考慮品牌個性之間的關係能有效提升預測結果。希望我們提出的方法可以為品牌管理者們提供一個易於實作的方法,以便他們藉由社群平台上公開的資料來持續追蹤和管理消費者對品牌個性的看法。
zh_TW
dc.description.abstractBuilding a strong and differentiated brand is one of the essential goals for a company, which can help improve its business performance and customer loyalty. In marketing practice, the most effective framework for assessing brand perception is brand personality. Brand personality is defined as “a set of human characteristics associated with a brand,” and it reflects consumers’ perspectives and feelings about a company or an organization. Besides, prior studies indicate that a well-established brand personality can lead to more positive customer responses. However, customer-perceived brand personality may be different from company-intended brand personality. Therefore, companies need to devote efforts to assessing customer-perceived brand personality constantly. Traditionally, assessing brand personality relies on the survey-based approach, which can be time consuming, labor-intensive, and unable to constantly monitor changes in brand personality over time.
With the popularity and widespread use of social media, recent marketing studies have begun to use social media data for brand-related research. Hence, in this research, we aim to measure customer-perceived brand personality with the social media data. Specifically, we develop a two-phase brand personality prediction model, which includes Base Models and Brand Personality Dependency Models. Moreover, we adopt the BERT pre-trained language model to extract embedding features from Twitter data, while considering possible relationships among brand personalities, and then utilizing machine learning methods to predict and measure customer-perceived brand personality. Our empirical evaluations demonstrate our two-phase prediction models outperform the benchmark method and also indicate that considering the relationships among brand personalities can achieve greater results. To sum, our proposed method can provide brand managers with an easy-to-implement method so that they can continuously monitor and manage customers’ views on the brand personality through the data publicly available on social media platforms.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:13:04Z (GMT). No. of bitstreams: 1
U0001-1308202003510600.pdf: 1780517 bytes, checksum: 76022b4963c23c45f8936be79707c938 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Literature Review 6
2.1 Brand Personality Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Measuring Brand Personality . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Survey-based Approach . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Text-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Psycholinguistic Lexicons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 Methodology 17
3.1 Tweet Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Two-Phase Brand Personality Prediction Model Construction . . . . . . . 21
Chapter 4 Empirical Evaluations 24
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1 Ground Truth Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 User-Generated Content Data . . . . . . . . . . . . . . . . . . . . . 28
4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Summary of Our Evaluation Experiments . . . . . . . . . . . . . . . . . . . 41
Chapter 5 Conclusion 43
5.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References 45
Appendix 51
A LIWC2007 Category List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B Experimental Results of Four Main Method . . . . . . . . . . . . . . . . . 52
dc.language.isoen
dc.title基於社群媒體資料之兩階段品牌個性預測模型zh_TW
dc.titleA Two-phase Model for Predicting Brand Personality with Social Media Dataen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳家齊(Chia-Chi Wu),楊錦生(Chin-Sheng Yang)
dc.subject.keyword品牌個性,文字探勘,社群媒體分析,BERT 預訓練語言模型,機器學習,zh_TW
dc.subject.keywordbrand personality,text mining,social media analytics,BERT pre-trained language model,machine learning,en
dc.relation.page55
dc.identifier.doi10.6342/NTU202003186
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-1308202003510600.pdf
  目前未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved