請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48984完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧虎生(Huu-Sheng Lur) | |
| dc.contributor.author | Ya-Yuan Hsu | en |
| dc.contributor.author | 許雅媛 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:12:59Z | - |
| dc.date.available | 2021-09-08 | |
| dc.date.copyright | 2016-09-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-21 | |
| dc.identifier.citation | IV. References
張秉倫, 1980: 落花生史話. 世界農業. 張學江, 江木蘭, 姜榮文, 余群新 and 段乃雄, 1993: 我國花生栽培種的共生差異與根瘤菌選擇. 中國農業科學. 許雅玲, 2014: 清代臺灣與寧波的貿易 國立政治大學台灣史研究所. 國立政治大學. 黃山內, 2000: 落花生專輯. 台南區農業改良場技術專刊 No.98. 潘玲華, 蔣菁, 鐘瑞春, 李忠, 馮斗 and 唐榮華, 2009: 花生屬植物起源、分類及花生栽培種祖先研究進展. 廣西農業科學 40, 344-347. 陳靜瑜, 馮翊果, 吳燕玲, 孟祥飛, 胡美娟, 陳文峰, 谷峻, 2015: 基於非培養方法與培養方法比較花生根瘤菌基因多樣性. Amarger, N. and Lobreau, J. P., 1982: Quantitative study of nodulation competitiveness in rhizobium strains. Appl Environ Microbiol, 44, 583-588. Angelini, J., F. Ibanez, T. Taurian, M. L. Tonelli, L. Valetti and A. Fabra, 2011: A study on the prevalence of bacteria that occupy nodules within single peanut plants. Curr Microbiol 62, 1752-1759. Arunachalam, V., G. D. Pungle, M. Dutta, P. T. C. Nambiar and P. J. Dart, 1984b: Efficiency of nitrogenase activity and nodule mass in predicting the relative preformance of genotypes assessed by a number of characters in groundnut (Arachis hypogaea). Exp Agric 20, 303-309. Bechara, M. D., M. C. Moretzsohn, D. A. Palmieri, J. P. Monteiro, M. B. Jr, J. M. Jr, J. F. Valls, C. R. Lopes and M. A. Gimenes, 2010: Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences. BMC Plant Biol 10, 255. Bogino, P., E. Banchio, L. Rinaudi, G. Cerioni, C. Bonfiglio and W. Giordano, 2006: Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann Appl Biol 148, 207-212. Borneman, J. and R. J. Hartin, 2000: PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66, 4356-4360. Brelles-Marino, G. Q., and Ané, J. M., 2008: Nod factors and the molecular dialogue in the rhizobia–legume interaction. In: G. N. Couto ed. Nitrogen Fixation Research Progress. pp. 173-227. Nova Science Publishers, Inc., New York. Chandler, M. R., 1977: Some observations on infection of Arachis hypogaea L. by rhizobium. J Exp Bot 29, 749-755. Chang, Y. L., J. Y. Wang, E. T. Wang, H. C. Liu, X. H. Sui and W. X. Chen, 2011: Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 61, 2496-2502. Chen, J. Y., Y. Feng, Y. Wu, X. Meng, M. Hu, W. F. Chen and J. Gu, 2015: Genetic diversity of peanut Bradyrhizobia estimated by culture-independent vs. culture-dependent approaches (in Chinese). Acta Microbiol Sin 55(6), 772-779. Cole, M. A. and G. H. Elkan, 1973: Transmissible resistance to penicillin G, neomycin, and chloramphenicol in Rhizobium japonicum. Antimicrob Agents Chemother 4, 248-253. de Felipe, M. R., Fernandez-Pascual, M.M., Pozuelo, J.M., 1987: Effects of the herbicides Lindex and Simazine on chloroplast and nodule development, nodule activity, and grain yield in Lupinus albus L. Plant Soil 101, 99-105. De Vos, P., 2011: Multilocus sequence determination and analysis. In: F. A. a. O. Rainey, A. ed. Taxonomy of prokaryotes-methods in microbiology. pp. 385-407. Elsevier, Amsterdam. Delamuta, J. R. M., R. A. Ribeiro, P. Menna, E. V. Bangel and M. Hungria, 2012: Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz J Biol, 698-710. Delfini, R., C. Belgoff, E. Fernández, A. Fabra and S. Castro, 2010: Symbiotic nitrogen fixation and nitrate reduction in two peanut cultivars with different growth habit and branching pattern structures. Plant Growth Regulation 61, 153-159. Depret, G. and G. Laguerre, 2008: Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol 179, 224-235. Dobert, R. C., B. T. Breil and E. W. Triplett, 1994: DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant-Microbe Interact 7, 564-572. Downie, J. A. and S. A. Walker, 1999: Plant responses to nodulation factors. J Cell Biol 2, 483-489. F. Ghasem, F., K. Poustini, H. Besharati, V. A. Mohammadi, F. Abooei Mehrizi and M. and Goettfer, 2012: Pre-incubation of Sinorhizobium meliloti with luteolin, methyl jasmonate and genistein affecting alfalfa (Medicago sativa L.) growth, nodulation and nitrogen fixation under salt stress conditions. J Agr Sci Tech 14, 1255-1264. Fabra, A., S. Castro, T. Taurian, J. Angelini, F. Ibanez, M. Dardanelli, M. Tonelli, E. Bianucci and L. Valetti, 2010: Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol 36, 179-194. Feffeira, E. P. d. B., L. H. A. Barbosa, A. M. Knupp, W. M. Mata, A. Wendland, A. D. Didonet, L. C. Melo and M. J. Del peloso, 2010: Identification of high nodulation efficiency among wild genotypes of common beans. Annu Rep Bean Improv Coop 53, 170-171. Felsenstein, J., 1985: Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39, 783-791. Friesen, M. L., 2012: Widespread fitness alignment in the legume-rhizobium symbiosis. New Phytol 194, 1096-1111. G. H. Elkan, J. C. W., T. J Schneewels and T. G. Isleib, 1990: Nodulation and Nitrogenase Activity of Peanuts Inoculated with Single Strain Isolates of Rhizobium. Pean Sci 7: 95-97. Ghasem, F., K. Poustini, H. Besharati, V. A. Mohammadi, F. Abooei Mehrizi and M. Goettfer, 2012: Pre-incubation of Sinorhizobium meliloti with luteolin, methyl jasmonate and genistein affecting alfalfa (Medicago sativa L.) growth, nodulation and nitrogen fixation under salt stress conditions. J Agr Sci Tech 14, 1255-1264. Gubry-Rangin, C., M. Garcia and G. Bena, 2010: Partner choice in Medicago truncatula-Sinorhizobium symbiosis. Proc R Soc B 277, 1947-1951. Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk and O. Gascuel, 2010: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307-321. Hall, A., 1999: BioEdit: a user-friendly sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95-98. Hall, B. G., 2013: Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30, 1229-1235. Haukka, K., K. Lindstrom and J. P. W. Young, 1998: Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64, 419-426. Heath, K. D., 2010: Intergenomic epistasis and coevolutionary constraint in plants and rhizobia. Evolution 64, 1446-1458. Heath, K. D. and P. Tiffin, 2007: Context dependence in the coevolution of plant and rhizobial mutualists. Proc R Soc B 274, 1905-1912. Heath, K. D. and P. Tiffin, 2009: Stabilizing mechanisms in a legume-rhizobium mutualism. Evolution 63, 652-662. Hirsch, A. M., M. R. Lum and J. A. Downie, 2001: What makes the rhizobia-legume symbiosis so special? Plant Physiol 127, 1484-1492. Ibanez, F., J. Angelini, M. S. Figueredo, V. Munoz, M. L. Tonelli and A. Fabra, 2015: Sequence and expression analysis of putative Arachis hypogaea (peanut) nod factor perception proteins. J Plant Res 128, 709-718. Jun Yan, J., X. Zeng Han, Z. J. Ji, Y. Li, E. T. Wang, Z. H. Xie and W. F. Chen, 2014: Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management. Appl Environ Microbiol 80, 5394-5402. Kamboj, D. V., R. Bhatia, D. V. Pathak and P. K. Sharma, 2010: Role of nodD gene product and flavonoid interactions in induction of nodulation genes in Mesorhizobium ciceri. Physiol Mol Biol Plants 16, 69-77. Kiers, E. T. and R. F. Denison, 2008: Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39, 215-236. Giller, K. E., P. T. C. Nambiar, B. S. Rao, P. J. Dart, and J. M. Day, 1987: A comparison of nitrogen fixation in genotypes of groundnut (Arachis hypogaea L.) using N15-isotope dilution. Biol Fertil Soils 5, 23-25. O'neill, S. L., R. Giordano, A. M. E. Colbert, T. L. Karr and H. M. Robertson, 1992: 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89, 2699-2702. Laguerre, G., P. Louvrier, M. R. Allard and N. Amarger, 2003: Compatibility of rhizobial genotypes within natural populations of rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl Environ Microbiol 69, 2276-2283. Lee, H. I., J. H. Lee, K. H. Park, D. Sangurdekar and W. S. Chang, 2012: Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Appl Environ Microbiol 78, 2896-2903. Lin, C. J. and S. Y. Jean, , 1985: Studies on the relationship between the nitrogenase activities of rhizobia and the yields of various peanut varieties and the affiliation between various peanut varieties and rhizobia. Jour Agric Res China 34(2), 164-172. Long, S. R., 1996: Rhizobium symbiosis: nod factors in perspective. The plant cell 8, 1885-1898. Lopez-lara, I. M., L. Blok-Tip, C. Quinto, M. L. Garcia, G. Stacey, G. V. Bloemberg and G. E. M. Lamers, 1996: NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Mol Microbiol 21, 397-408. Lu, J. K., Y. J. Dou, Y. J. Zhu, S. K. Wang, X. H. Sui and L. H. Kang, 2014: Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64, 1900-1905. Madsen, L. H., L. Tirichine, A. Jurkiewicz, J. T. Sullivan, A. B. Heckmann, A. S. Bek, C. W. Ronson, E. K. James and J. Stougaard, 2010: The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1, 10. Martens, M., P. Dawyndt, R. Coopman, M. Gillis, P. De Vos and A. Willems, 2008: Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58, 200-214. McTaggart, L. R., S. E. Richardson, M. Witkowska and S. X. Zhang, 2010: Phylogeny and identification of Nocardia species on the basis of multilocus sequence analysis. J Clin Microbiol 48, 4525-4533. Menna, P., F. G. Barcellos and M. Hungria, 2009: Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 59, 2934-2950. Menna, P. and M. Hungria, 2011: Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 61, 3052-3067. Mergaert, P., M. V. Montagu and M. Holsters, 1997: Molecular mechanisms of Nod factor diversity. Mol Microbiol 25, 811-817. Mougel, C., P. Offre, L. Ranjard, T. Corberand, E. Gamalero, C. Robin and P. Lemanceau, 2006: Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170, 165-175. Moulin, L., G. Béna, C. Boivin-Masson and T. Stępkowski, 2004: Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogen Evol 30, 720-732. Munoz, V., F. Ibanez, M. L. Tonelli, L. Valetti, M. S. Anzuay and A. Fabra, 2011: Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Cordoba, Argentina. Syst Appl Microbiol 34, 446-452. Nandasena, K. G., G. W. O'Hara, R. P. Tiwari, E. Sezmis and J. G. Howieson, 2007: In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol 9, 2496-2511. Nigam, S. N., S. L. Dwivedi, P. T. C. Nambiar, R. W. Gibbons and P. J. Dart, 1985: Combining ability analysis of N2-fixation and related traits in peanut. Pean Sci 12, 55-57. Okazaki, S., K. Yuhashi and K. Minamisawa, 2003: Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. FEMS Microbiol Ecol 45, 155-160. Oldroyd, G. E. and J. A. Downie, 2004: Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5, 566-576. O'neill, S. L., R. Giordano, A. M. E. Colbert, T. L. Karr and H. M. Robertson, 1992: 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89, 2699-2702. Orr, H. A., 2009: Fitness and its role in evolutionary genetics. Nat Rev Genet 10, 531-539. Papke, R. T., J. E. Koenig, F. Rodriguez-Valera and W. F. Doollittle, 2004: Frequent recombination in a saltern population of Halorubrum. Science 306, 1928-1929. Parker, M. A., 2012: Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol Ecol 21, 1769-1778. Perret, X., C. Staehelin and W. J. Broughton, 2000: Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64, 180-201. Porter, S. S., M. L. Stanton and K. J. Rice, 2011: Mutualism and adaptive divergence: co-Invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis. PloS one 6, e27935. Qian, J., S. Kwon and M. A. Parker, 2003: rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol Lett 219, 159-165. Rajendhran, J. and P. Gunasekaran, 2011: Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166, 99-110. Ratcliff, W. C., K. Underbakke and R. F. Denison, 2012: Measuring the fitness of symbiotic rhizobia. Symbiosis 55, 85-90. Rose, C. M., M. Venkateshwaran, P. A. Grimsrud, M. S. Westphall, M. R. Sussman, J. J. Coon and J. M. Ane, 2012: Medicago phospho protein database: a repository for Medicago truncatula phosphoprotein data. Front Plant Sci 3, 122. Rossum, D. V., 1995: Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61, 1599-1609. Sachs, J. L., E. L. Simms and M. O. Ehinger, 2010: Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J Evol Biol 23, 1075-1089. Sadowsky, M. J., H. H. lkeyser and B. B. Bohloo, 1983: Biochemical characterization of fast- and slow-growing rhizobia that nodulate soybeans. Int J Syst Bacteriol 33, 716-722. Saleena, L. M., P. Loganathan, S. Rangarajan and S. Nair, 2001: Genetic diversity of Bradyrhizobium strains isolated from Arachis hypogaea. Can J Microbiol 47, 118-122. Sarita, S., P. K. Sharma, U. B. Priefer and J. Prell, 2005: Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54, 1-11. Sharma, R. S., A. Mohmmed, V. Mishra and C. R. Babu, 2005: Diversity in a promiscuous group of rhizobia from three Sesbania spp. colonizing ecologically distinct habitats of the semi-arid Delhi region. Res Microbiol 156, 57-67. Simms, E. L., and Taylor, D. L., 2002: Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Proc R Soc B 277, 1947-1951. Simms, E. L., D. L. Taylor, J. Povich, R. P. Shefferson, J. L. Sachs, M. Urbina and Y. Tausczik, 2006: An empirical test of partner choice mechanisms in a wild legume-rhizobium interaction. Proc R Soc B 273, 77-81. Singh, B., and Singh, U., 1991: Peanut as a source of protein for human foods. Plant Foods Hum Nutr 41, 165-177. Singleton, P. W., B. B. Bohlool and P. L. Nakao, 1992: Legume response to rhizobial Inoculation in the tropics- myths and realities. Soil Sci Soc Am and Am Soc Agron Spec Publ 29, pp. 135–155. Singleton, P. W., P. Somasegaran, P. Nakao, H. H. Keyser, H. J. Hoben and P. I. Ferguson, 1990: Applied BNF technology: a practical guide for extension specialists. 46-62. Söderberg, K. H., P. A. Olsson and E. Bååth, 2002: Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40, 223-231. Sprent, J. I., 2007: Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174, 11-25. Steenkamp, E. T., T. Stepkowski, A. Przymusiak, W. J. Botha and I. J. Law, 2008: Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48, 1131-1144. Stepkowski, T., C. E. Hughes, I. J. Law, L. Markiewicz, D. Gurda, A. Chlebicka and L. Moulin, 2007: Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73, 3254-3264. Tamura, K., 1992: Estimation of the number of nucleotide substitutions when there are strong transition-rransversion and G+C-Content biases. Mol Biol Evol 9, 678-687. Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar, 2013: MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729. Taurian, T., F. Ibañez, A. Fabra and O. Aguilar, 2006: Genetic diversity of rhizobia nodulating Arachis hypogaea L. in central Argentinean soils. Plant Soil 282, 41-52. Taurian, T., B. Moron, M. E. Soria-Diaz, J. G. Angelini, P. Tejero-Mateo, A. Gil-Serrano, M. Megias and A. Fabra, 2008: Signal molecules in the peanut-bradyrhizobia interaction. Arch Microbiol 189, 345-356. Tavare ́, S., 1986: Some probabilistic and statistical problems in the analysis of DNA sequences., Lect MathLife Sci 17, 57-86. Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994: CLUSTAL W- improving the sensitivity of progressive multiple; sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. Vincent, J. M., 1970: A Manual for the Practical Study of Root-Nodule Bacteria., Blackwell Scientific Publications. Wang, D., S. Yang, F. Tang and H. Zhu, 2012: Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14, 334-342. Wang, H., P. Khera, B. Huang, M. Yuan, R. Katam, W. Zhuang, K. Harris-Shultz, K. M. Moore, A. K. Culbreath, X. Zhang, R. K. Varshney, L. Xie and B. Guo, 2015: Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers. J Integr Plant Biol 58, 452-465. Wang, R., Y. L. Chang, W. T. Zheng, D. Zhang, X. X. Zhang, X. H. Sui, E. T. Wang, J. Q. Hu, L. Y. Zhang and W. X. Chen, 2013: Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 36, 101-105. Weir, B. S., 2006: Systematics, specificity, and ecology of New Zealand rhizobia. University of Auckland, Auckland (PhD Thesis). White, L. J., K. Jothibasu, R. N. Reese, V. S. Brozel and S. Subramanian, 2015: Spatio temporal influence of isoflavonoids on bacterial diversity in the soybean rhizosphere. Mol Plant Microbe interact 28, 22-29. Winkelmann, N., U. Jaekel, C. Meyer, W. Serrano, R. Rachel, R. Rossello-Mora and J. Harder, 2010: Determination of the diversity of Rhodopirellula isolates from European seas by multilocus sequence analysis. Appl Environ Microbiol 76, 776-785. Yabuki, A., T. Toyofuku and K. Takishita, 2014: Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes. ISME J 8, 1544-1547. Yang, G. P., F. Debelle, F. Maillet, O. Schilitz, C. Vialas, A. Savagnac, J. C. Prome and J. Denarie, 1998: Rhizobium nod factor structure and the phylogeny of temperate legumes. Biological nitrogen fixation for the 21st century, 185-188. Yu, X., S. Cloutier, J. T. Tambong and E. S. Bromfield, 2014: Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 64, 3202-3207. Zhang, X., G. Nick, S. Kaijalainen, Z. Terefework, L. Paulin, S. W. Tighe, P. H. Graham and K. Lindström, 1999: Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan, China. Syst Appl Microbiol 22, 378-386. Zhao, X., J. Chen and F. Du, 2012: Potential use of peanut by-products in food processing: a review. J Food Sci Technol 49, 521-529. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48984 | - |
| dc.description.abstract | 根瘤菌與豆科植物共生,透過生物固氮作用可以將空氣中的氮轉化為植物可利用的氮源。施用根瘤菌等微生物肥料有助於減少化學肥料的投入,因此被視為一種對環境友善的施肥方式。花生 (Arachis hypogara L.) 屬豆科蝶型花亞科,因其宿主專一性感染機制較不嚴謹,在田間施用花生根瘤菌時 (註:慢生型根瘤菌),若是土壤中已存在有更高宿主親和性之原生共生菌,則花生會優先與其結瘤,因而降低了微生物肥料的接種效率。豆科植物與根瘤菌之間的共生親和性高低主要取決於宿主與共生菌雙方的基因型。本研究利用不同栽培型的花生品種(包括瓦倫西亞型的黑金剛、西班牙型的台南選9號、中國遠雜9102以及中國商花5號)從臺大試驗田土壤中捕集花生根瘤菌。根據PCR檢驗結果,試驗田土壤中至少存在著帶有Clade III.3與Clade VIII這兩類nodA基因型的根瘤菌。從花生根瘤所分離出的24株共生菌經多基因序列以及結瘤基因分析鑑定,皆為帶有Clade VIII 的nodA基因之慢生型根瘤菌。本研究進一步評估接種單一根瘤菌株之共生固氮能力,結果發現將帶有Clade VIII結瘤基因的NTU-T-2菌株接種在台南選9號花生可展現最佳的共生親和性,而該菌株與其他兩種栽培型花生亦可表現較優良的結瘤能力。在共接種競爭結瘤試驗中,我們也證實了帶有Clade VIII nodA之花生根瘤菌顯然比帶有Clade III.3 nodA的花生根瘤菌具有結瘤能力上的優勢。花生雖然是被視為共生關係較不專一的豆科植物,然而本研究發現花生宿主對於帶有Clade VIII 這種nodA基因型的根瘤菌有較高的共生親和性,可作為篩選具有競爭優勢的花生根瘤菌之依據,將有助於提高花生根瘤菌的接種效率。 | zh_TW |
| dc.description.abstract | Rhizobia are bacterial symbionts of legumes that can convert atmospheric nitrogen into ammonia via biological nitrogen-fixation within root-nodules. Successful application of rhizobial inoculant can reduce the usage of chemical fertilizer without a decrease in crop yield, and it has been regarded as an environmental friendly approach. Peanut (Arachis hypogaea L.) is an annual herbaceous plant in the Fabaceae. It is usually nodulated by Bradyrhizobium spp., and is regarded as a promiscuous (or less-selective) legume due to its infection is via a less stringent pathway, called crack entry. However, if the indigenous rhizobia with high affinity presented in soil, peanut host will form nodules with them rather than the rhizobial inoculant. This feature causes a severe defect of rhizobial inoculant application in peanut cultivation. The symbiotic fitness between legumes and rhizobia is affected by the genotype of either host or symbiont. In this study, four peanut cultivated varieties (including the Valencia type: Taiwanese cv. BK, and some Spanish type cultivars: Taiwanese cv. TNS 9, Chinese cv. Yuanza9102, and Chinese Shanghua 5) were applied to trap peanut rhizobia inhabited the soil of NTU experimental field. According to the PCR results, there were Bradyrhizobium spp. with Clade III.3 and VIII nodA genotypes in the soil sample. Total 24 strains were isolated from the peanut root-nodules. All of them belonged to Bradyrhizobium genus carrying Clade VIII nodA genotype by multilocus sequence analysis (MLSA) and nodA sequence analysis. Furthermore, comparing the N-fixation ability between Clade III.3 and VIII strains by single strain inoculation test showed that the symbiont with Clade VIII nodA (i.e strain NTU-T-2) performed better symbiotic fitness on cv. TNS 9, and also showed good nodulation ability on the other two cultivars (i.e Valencia type cultivar: Taiwanese cv. TN 16, and Virginia type cultivar: Taiwanese cv. TC 2). Furthermore, in the co-inoculation experiment on cv. TNS 9, the Clade VIII nodA strain (i.e NTU-T-2) also showed better nodulation efficiency than that of type III.3 strains. These results indicated that although peanut is considered as a less-selective legume host, it still showed advantaged nodulation fitness with the Clade VIII nodA strains. This finding not only gives new insights into symbiotic fitness, but can be used as a screening platform for high nodulation competitiveness inoculants to increase peanut rhizobial inoculation efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:12:59Z (GMT). No. of bitstreams: 1 ntu-105-R02621111-1.pdf: 4118109 bytes, checksum: dc92780df5bfc65427d7bd786c052b3b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
謝誌 II 中文摘要 IV ABSTRACT V CONTENTS Vii I. INTRODUCTION 1 1. PEANUT (ARACHIS HYPOGAEA) 1 2. SYMBIOSIS OF PEANUT AND ITS SYMBIONTS 2 3. EARLY INTERACTIONS BETWEEN LEGUME AND RHIZOBIA 2 4. NODULATION GENES AND HOST RANGE DETERMINATION IN SYMBIOSIS 4 5. MOLECULE PHYLOGENIC ANALYSIS OF BRADYRHIZOBIUM SPP. 5 6. SYMBIOTIC GENES AND HOST RANGE OF BRADYRHIZOBIUM 6 7. SYMBIOSIS FITNESS OF LEGUME AND RHIZOBIA 7 8. AIMS OF THIS STUDY 8 II MATERIALS AND METHODS 10 1. ISOLATION OF SYMBIONTS FROM ROOT-NODULE OF PEANUT 10 2. GROWTH AND CULTURE CONDITION OF ISOLATES 10 3. NITROGENASE ACTIVITY OF ISOLATE 11 4. DNA EXTRACTION FROM BACTERIAL STRAINS 11 5. PHYLOGENETIC ANALYSIS 11 6. SYMBIOTIC FEATURES EVALUATION (SINGLE STRAIN INOCULATION TEST) 12 7. QUANTITATIVE EVALUATION OF NODULATION OCCUPANCY 13 8. PCR-BASED DETECTION OF BRADYRHIZOBIUM SPP. FROM BULK SOIL AND ROOT-NODULE 14 9. STATISTICAL ANALYSIS 15 III. RESULTS 16 1. ISOLATION OF SYMBIONTS FROM ROOT-NODULES 16 2. DETECTION OF NODA GENOTYPES IN SOIL BY PCR AMPLIFICATION 18 3. PHYLOGENETIC ANALYSIS OF SYMBIOTIC NODULATION GENE NODA 19 4. SYMBIOTIC FEATURES OF CLADE VIII AND CLADE III.3 STRAINS (SINGLE STRAIN INOCULATION) 21 5. NODULATION COMPETITION ASSAYS BETWEEN STRAIN NTU-T-2 (NODA CLADE VIII) AND THOSE STRAINS OF CLADE III.3 24 IV. DISCUSSION 27 V REFERENCES. 34 VI. Tables and Figures 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | nodA | zh_TW |
| dc.subject | 豆科植物 | zh_TW |
| dc.subject | 根瘤菌 | zh_TW |
| dc.subject | 共生親和性 | zh_TW |
| dc.subject | 花生 | zh_TW |
| dc.subject | 慢生型根瘤菌 | zh_TW |
| dc.subject | symbiotic fitness | en |
| dc.subject | nodA | en |
| dc.subject | Bradyrhizobium | en |
| dc.subject | Arachis hypogaea | en |
| dc.subject | Legume | en |
| dc.subject | rhizobia | en |
| dc.title | 花生根瘤菌之多基因譜系分析及其與不同栽培型花生之共生親合性研究 | zh_TW |
| dc.title | Study on molecular phylogeny and symbiotic fitness of Bradyrhizobium spp. isolated from different peanut (Arachis hypogaea L.) cultivars | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 劉啟德(Chi-Te Liu) | |
| dc.contributor.oralexamcommittee | 陳仁治(Jen-Chih Chen),劉?睿(Je-Ruei Liu),黃文達(Wen-Dar Hwang) | |
| dc.subject.keyword | 豆科植物,根瘤菌,共生親和性,花生,慢生型根瘤菌,nodA, | zh_TW |
| dc.subject.keyword | Legume,rhizobia,symbiotic fitness,Arachis hypogaea,Bradyrhizobium,nodA, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU201603385 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
