請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48971
標題: | 一種基於新的信賴區間更新規則之高效牛頓法於大規模線性分類 An Efficient Newton Method with Novel Trust Region Update Rules for Large-scale Linear Classification |
作者: | Ya Zhu 朱雅 |
指導教授: | 林智仁 |
關鍵字: | 大規模線性分類,信賴區間,牛頓法,線性搜尋, large-scale linear classification,trust region,Newton method,line search, |
出版年 : | 2016 |
學位: | 碩士 |
摘要: | 線性分類的一個主要任務是解決最小化問題。雖然有很多最優化技術可以方便地運用,但是對於大規模資料需要有特殊的演算法改進。典型的無規則最優化演算法迭代地進行兩個過程:尋找一個好的下降方向,然後調整合適的步長。過去的線性分類發展主要集中在尋找下降方向,而很少考慮調整步長。在這篇論文中,我們提出了一種新穎的調整信賴區間大小的方法來間接地調整步長。這個設定嵌於一個針對邏輯迴歸和L2損失支援向量機的信賴區間牛頓法中。實驗證明我們的新方法極大地領先現有的大規模線性分類方法。 The main task in training a linear classification is to solve an unconstrained minimization problem. While many optimization techniques can be conveniently applied, special algorithmic development and implementation tricks are needed to handle large scale data sets. Typically, an unconstrained optimization method iteratively conduct two procedures of finding a good direction and then deciding a suitable step size. Past developments for linear classification focus on finding the direction, but little attention has been paid on adjusting the step size. In this work, we develop novel techniques to adjust the trust-region size that indirectly decides the step length. The setting is embedded into a trust region Newton method for logistic regression and L2-loss SVM. Experiments indicate that our new settings significantly outperform existing implementations for large-scale linear classification. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48971 |
DOI: | 10.6342/NTU201603529 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。