請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48970
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
dc.contributor.author | Yu-Chi Liu | en |
dc.contributor.author | 劉宇騏 | zh_TW |
dc.date.accessioned | 2021-06-15T11:12:39Z | - |
dc.date.available | 2019-08-25 | |
dc.date.copyright | 2016-08-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-21 | |
dc.identifier.citation | Albani, M., and P. Bernardi, ``A numerical method based on the discretization of Maxwell equations in integral form,' IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446--450, 1974.
Bakker, R. M., A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, ``Near-field excitation of nano antenna resonance,' Opt. Express, vol. 15, pp. 13682--13688, 2007. Berenger, J. P., ``A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185--200, 1994. Byun, K. M., and S. J. Kim, ``Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,' Opt. Express, vol. 13, pp. 3737--3742, 2005. Chen, Y. T., and H. C. Chang, ``Dipole nano-antennas with multi-bent-sections,' in Proceedings of Optics & Photonics Taiwan, International Conference 2015 (OPTIC 2015), paper, 2015-FRI-P0101-P004, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., December 4–5, 2015. Chiou, S. M., and H. C. Chang, ``A modified contour bowtie nano-antenna and its near-field enhancement,' in Proc. OPTIC 2013, paper, 2013-THU-P0101-P011, 2013. Chung, S. Y., C. Y. Wang, C. H. Teng, C. P. Chen, and H. C. Chang, ``Simulations of Dielectric and Plasmonic Waveguide-Coupled Ring Resonators Using the Legendre Pseudospectral Time-Domain Method,' IEEE/OSA J. Lightwave Technol., Vol. 30, No. 11, pp. 1733–1742, June 1, 2012. Courant, R., K. Friedrichs, and H. Lewy, ``Uber die partiellen differenzengleichungen der mathematischen physik,' Math. Ann., vol. 100, pp. 32--74, 1928. Drude, P.,``Zur elektronentheorie der metalle,' Ann. Phys., vol. 1, pp. 566--613, 1900. Fisher, H., and O. J. F. Martin, ``Engineering the optical response of plasmonic nanoantenna,' Opt. Express, vol. 16, pp. 9144--9154, 2008. Fromm, D. P., A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,``Gap-dependent optical coupling of single ``bowtie' nanoantennas resonant in the visible,' Neno. Lett., vol. 4, no. 5, pp. 957--961, 2004. Farahani, J. N., H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, ``Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,' Nanotechnol., vol. 18, no. 12, 2007, Art ID. 125506. Harrington, R. F., ``The method of moments in electromagnetics,' J. Electromagn. Waves Appl., vol. 1, pp. 181--200, 1987. Holland, R., and K. S. Cho, Alternating-direction implicit differencing of Maxwell's equations: 3D results, Computer Sciences Corp., Albuquerque, NM, Technical Report to Harry Diamond Labs., Adelphi, MD, Contract DAAL02-85-C-0200, June 1, 1986. Hsiao, H. H., S. M. Chiou, Y. P. Chang, and H. C. Chang, ``Broadly tunning resonant wavelengths of contour bowtie nano-antennas operating in the near- and mid-infrared,' IEEE Photon. J., vol. 7, 2015, Art ID. 4501108. Hatab, N. A. et al., ``Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,' Nano Lett., vol. 10, no. 12, pp. 4952--4955, 2010. Karumuri, S., and A. K. Kalkan, ``Hybird plasmon damping chemical sensor,'IEEE Trans. Nanotechno., vol. 790--795, 2011. Kernighan, B. W., D. M. Ritchie, and P. Ejeklint, The C programming Language vol. 2: Prentice-Hall Englewood Cliffs, 1988. Kim, S., J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, ``High-harmonic generation by resonant plasmon field enhancement,' Nature, vol. 453, no. 7196, pp. 757--760, 2008. Ko, K. D., A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint ``Nonlinear optical response from arrays of Au bowtie nanoantennas,' Nano Lett, vol. 11, no. 1, pp. 61--65, 2011. Li, J., A. Salandrino, and N. Engheta, ``Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,' Phys. Rev. B, vol. 76, pp. 245403--245407, 2007. Liu, Q. H., ``The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell's equations,' Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1, pp. 122--125, 1997. Communication Systems, 2007. Lorentz, H. A., The Theory of Electrons. Teubner, 1906. vol. 1, pp. 122--125, 1997. Communication Systems, 2007. Maier, S. A., Plasmonics: Fundamentals and Applications. New York, NY: Springer, 2007. Mie, G., ``Beitrage zur optik trber medien, speziell kolloidaler metallosungen,' Annalen der Physik, vol. 330, pp. 377--445, 1908. Novotny, L., and N. Y. Hulst, ``Antennas for light,' Nat. Photon., vol. 5, no. 2, pp. 83--90, 2011. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, ``Simple treatment of multi-term dispersion in FDTD,' IEEE Microwave Guided Wave Lett.,vol. 7, pp. 121--123, 1997. Palik, E. D., Handbook of Optical Constants of Solids. London, U.K.: Academic, 1985. Pfullmann, N., C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. kovacev, V. Knittel, R. Bratschitsch, and D. Akemeier, ``Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,' New J. Phys., vol. 15, 2013, Art ID.093027. Roden, J. A., and S. D. Gedney, ``Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,' Microwave Opt. Technol. Lett., vol. 27, pp. 334--339, 2000. Salandrino, A., A. Alu, and N. Engheta, ``Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution,' J. Opt. Soc. Am. B, vol. 24, pp. 3007--3013, 2007. Sederberg, S., and A. Y. Elezzabi, ``Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,' Opt. Express, vol. 19, pp. 15532--15537, 2011. Schuck, P. J., D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, ``Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,' Phys. Rev. Lett., vol. 94, no. 1, Jan. 2005, Art ID. 017402. Schuller, J. A., E. S. Barnard W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma ``Plasmonics for extreme light concentration and manipulation,' Nat. Mater., vol. 9, no. 3, pp. 193--204, 2010. Seok, T. J., A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovich, and M. C. Wu, ``Radiation engineering of optical antennas for maximum field enhancement,' Nano Lett., vol. 11, pp. 2606--2610, 2011. Sivis, M., M. Duwe, B. Abel, and C. Ropers, ``Extreme-ultraviolet light generation in plasmonic nanostructures,' Nat. Phys., vol. 9, no. 5, pp. 304--309, 2013. Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, ``Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,' Nano Lett.,vol. 6, pp. 355--360, 2006. Taflove, A., and M. Brodwin, Computation Electromagnetics: The Finite-Difference Time-Domain Method.Norwood, MA: Artech House, 2005. Teng, C. H., B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, ``A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations,' J. Sci. Comput., vol. 36, No. 3, pp. 351--390, september 2008. Umashankar, K., and A. Taflove, ``A novel method to analyze electromagnetic scattering of complex objects,' IEEE Trans. Electromagnetic Compat., vol. 24, pp. 397-405, 1982. Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, ``Nanolithography using high transmission nanoscale bowtie apertures,'Nano Lett.,vol. 6, pp. 361--364, 2006. Weiland, T., ``A discretization model for the solution of Maxwell's equation for six-component field,' Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116--120, 1977. Xu, H., E. J. Bjerneld, M. Kall, and L. Borjesson, ``Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,' Phys. Rev. Lett., vol. 83, 4357--4360, 1999. Yee, K., ``Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propaga., vol. 14, pp. 302--307, 1966. Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, ``Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,' Nano Lett., vol. 10, pp. 1006--1011, 2010. Zienkiewicz, M., and Y. K. Cheung, ``Finite elements in the solution of field problems,' The Engineer, vol. 220, pp. 507--510, 1965. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48970 | - |
dc.description.abstract | 時域有限差分法已被廣泛的運用在光電電磁模擬上,我們利用C++語言建構了一個三維時域有限差分法模擬器,並且擁有平行化功能,利用多台電腦透過訊息傳遞介面協定,以減少計算的時間。
本論文主要分析四種多段轉折奈米天線結構與陣列。我們先討論單個的多段轉折奈米天線,以一個寬頻的正向入射電磁波作為波源得到波長0.3 微米到4.0 微米區間的響應,並且計算天線間隙的局部電場強度增強及其相對應的共振波長,改變天線的臂長並觀察其對頻譜所造成的影響,接著,我們將天線擺放成陣列來觀察其特性,並且比較其與單個的多段轉折奈米天線的不同,最重要的研究結果發現,陣列的週期長度對天線陣列的頻率響應有重要的影響,這些將會在後面被討論,對於有更多轉折或更長臂長的天線,長波長的寬頻特性將會被觀察到。 | zh_TW |
dc.description.abstract | The finite-dierence time-domain(FDTD)method has been widely used in computational electromagnetics. We construct aparallelized three-dimensional(3-D) FDTD simulator in C++ language and several computers are connected to speed-up the computations by using the message passing interface(MPI) protocol in order to reduce the simulationtime. In this research, the Multi-Bent-Section Nano-Antennas (MBSNAs) and arrays of four dierent structures are numerically studied. The single Multi-Bent-Section Nano-Antennas are first investigated by applying a broadband normally incident plane wave to obtain responses in the wavelength range from 0.3 um to 4.0 um. The electriceld enhancement in the gap of antenna and corresponding resonant wavelengths are calculated and the influence of dierent varied antenna arm widths on the enhancement spectrum is studied. Then the corresponding four different arrays are investigated and compared with the single antennas.The enhancement spectra of the arrays are found to depend critically on the array period lengths and are examined in detail. For antennas with more sections or longer arms, wide-band characteristic in the long wavelength regime is observed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:12:39Z (GMT). No. of bitstreams: 1 ntu-105-R03941101-1.pdf: 26750110 bytes, checksum: 3f9a736b70390d3e1f2d2b454208c7b4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Motivations................................1 1.2 Introduction to Computational Electromagnetic............3 1.3 Chapter Outline..............................4 2 The Finite-Dierence Time-Domain(FDTD) Method 6 2.1 Yee Algorithm for Maxwell'sEquations.................6 2.2 The Courant Stability Limit.......................7 2.3 Modeling of Dispersive Materials....................8 2.3.1 The Drude Model.........................8 2.3.2 The Drude-Lorentz Model....................10 2.3.3 The Auxiliary Dierential Equation(ADE )Method......11 2.4 The Total-field/Scatter-field Technique.................13 2.5 Convolutional Perfectly Matched Layer(CPML)............14 2.6 Periodic Boundary Conditions(PBC)..................16 2.7 Parallelized FDTD Method.......................16 2.8 Numerical Accurary Verication for 2-D Circular Cylinders......17 2.9 Numerical Accuracy Verication for the3-D Silver Sphere......18 3 Gap-Field Enhancement in Multi-Bend-Section Nano-Antennas27 3.1 Introduction................................27 3.2 Multi-Bent-Section Nano-Antennas(1)..................29 3.2.1 The Single MBSNA(1)......................29 3.2.2 The Single MBSNA(1) with Various Boundary Lengths....29 3.2.3 The Single MBSNA(1) with Various Arm Widths.......30 3.3 Multi-Bent-Section Nano-Antennas(2)..................30 3.3.1 The Single MBSNA(2)......................30 3.3.2 The Single MBSNA(2) with Various Arm Widths.......31 3.4 Multi-Bent-Section Nano-Antennas(3)..................31 3.4.1 The Single MBSNA(3)......................31 3.4.2 The Single MBSNA(3) with Various Arm Widths.......31 3.5 Multi-Bent-Section Nano-Antennas(4)..................32 3.5.1 The Single MBSNA(4)......................32 3.5.2 The Single MBSNA(4) with Various Arm Widths.......32 3.5.3 The Single MBSNA(4) with Various Upper Arm Widths...32 3.5.4 The Single MBSNA(4) with Various Left Arm Widths....33 3.6 Multi-Bent-Section Nano-Antennas(4) with dierent sample numbers in the FDTD Method...........................33 4 Multi-Bent-Section Nano-Antenna Arrays 66 4.1 Multi-Bent-Section Nano-Antenna(1) Arrays..............66 4.1.1 Comparisons between a Single MBSNA(1) and MBSNA(1) Arrays...............................66 4.1.2 The MBSNA(1) Arrays with Various Period Lengths.....67 4.1.3 The MBSNA(1) with Various Arm Width Lengths.......68 4.1.4 The MBSNA(1) Arrays with Various Period Lengths and Various Arm Widths.........................68 4.2 Multi-Bent-Section Nano-Antennas(2)Arrays.............68 4.2.1 Comparisons between a Single MBSNA(2) and MBSNA(2) Arrays...............................69 4.2.2 The MBSNA(2) arrays with Various Period Lengths......69 4.2.3 The MBSNA(2) with Various arm Width Lengths.......70 4.2.4 The MBSNA(2) Arrays with Various Period Lengths and Various Arm WidthS.........................70 4.2.5 The MBSNA(2) Arrays with Smaller Range Various Period Lengths ..............................70 4.3 Multi-Bent-Section Nano- Antennas(3)Arrays.............71 4.3.1 Comparisons between a Single MBSNA(3) and MBSNA(3) Arrays...............................71 4.3.2 The MBSNA(3) arrays with Various Period Lengths......72 4.3.3 The MBSNA(3) with Various Arm Widths...........72 4.3.4 The MBSNA(3) Arrays with Various Period Lengths and Various Arm Widths.........................73 4.4 Multi-Bent-Section Nano-Antennas(4)Arrays.............73 4.4.1 Comparisons between a Single MBSNA(4) and MBSNA(4) Arrays...............................73 4.4.2 The MBSNA(4) arrays with Various Period Lengths......74 4.4.3 The MBSNA(4) with Various Arm Widths...........74 4.4.4 The MBSNA(4) Arrays with Various Period Lengths and Various Arm Widths.........................75 4.4.5 The MBSNA(4) Arrays with Various Upper Arm Widths...75 4.4.6 The MBSNA(4) arrays with Various Left Arm Widths....75 5 Conclusion125 Bibliography127 | |
dc.language.iso | en | |
dc.title | 以平行化時域有限差分法研究多段轉折奈米天線結構 | zh_TW |
dc.title | Study of Multi-Bent-Section Nano-Antenna Structures Using the Parallelized Finite-Difference Time-Domain Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 魏培坤(Pei-Kuen Wei),楊宗哲(Tzong-Jer Yang) | |
dc.subject.keyword | 有限時域差分法,表面電漿子,奈米天線,天線陣列, | zh_TW |
dc.subject.keyword | Finite-difference time-domain(FDTD)method,surface plasmons,nano-antennas,antenna arrays., | en |
dc.relation.page | 133 | |
dc.identifier.doi | 10.6342/NTU201603127 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-22 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 26.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。