Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48959Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Yi-Ming Chan | en |
| dc.contributor.author | 詹益銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:12:23Z | - |
| dc.date.available | 2020-09-08 | |
| dc.date.copyright | 2016-09-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-22 | |
| dc.identifier.citation | [1] Y.-S. Lee, Y.-M. Chan, L.-C. Fu, and P.-Y. Hsiao, 'Near-Infrared-Based Nighttime Pedestrian Detection Using Grouped Part Models,' IEEE Transactions on Intelligent Transportation Systems, vol. 16, pp. 1929-1940, 2015.
[2] S. Sivaraman and M. M. Trivedi, 'Integrated Lane and Vehicle Detection, Localization, and Tracking: A Synergistic Approach,' IEEE Transactions on Intelligent Transportation Systems, vol. 14, pp. 906-917, 2013. [3] S. Sivaraman and M. M. Trivedi, 'Real-time vehicle detection using parts at intersections,' in IEEE Conference on Intelligent Transportation Systems, 2012, pp. 1519-1524. [4] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, 'An empirical study of context in object detection,' in IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1271-1278. [5] C. Galleguillos, B. McFee, S. Belongie, and G. Lanckriet, 'Multi-class object localization by combining local contextual interactions,' in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 113-120. [6] Y. J. Lee and K. Grauman, 'Object-graphs for context-aware category discovery,' in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 1-8. [7] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, 'Contextualizing object detection and classification,' in IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 1585-1592. [8] B. McFee, C. Galleguillos, and G. Lanckriet, 'Contextual Object Localization With Multiple Kernel Nearest Neighbor,' IEEE Transactions on Image Processing, vol. 20, pp. 570-585, 2011. [9] Y. Lee and K. Grauman, 'Object-Graphs for Context-Aware Visual Category Discovery,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PP, pp. 1-1, 2011. [10] D. M. Gavrila, 'A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 1408-1421, 2007. [11] N. Dalal and B. Triggs, 'Histograms of Oriented Gradients for Human Detection,' in Computer Vision and Patter Recognition, 2005, pp. 886-893. [12] X. Wang, T. X. Han, and S. Yan, 'An HOG-LBP human detector with partial occlusion handling,' in IEEE International Conference on Computer Vision, 2009, pp. 32-39. [13] J. Wu, C. Geyer, and J. M. Rehe, 'Real-time human detection using contour cues,' in IEEE International Conference on Robotics and Automation, 2011, pp. 860-867. [14] A. Bosch, A. Zisserman, and X. Munoz, 'Representing shape with a spatial pyramid kernel,' in ACM International Conference on Image and Video Retrieval, Amsterdam, The Netherlands, 2007, pp. 401-408. [15] P. Dollar, Z. Tu, P. Perona, and S. Belongie, 'Integral Channel Features,' in British Machine Vision Conference, 2009, pp. 91.1-91.11. [16] P. Dollar, S. Belongie, and P. Perona, 'The Fastest Pedestrian Detector in the West,' in British Machine Vision Conference, 2010, pp. 68.1-68.11. [17] Y.-T. Chen and C.-S. Chen, 'Fast Human Detection Using a Novel Boosted Cascading Structure With Meta Stages,' IEEE Transactions on Image Processing, vol. 17, pp. 1452-1464, 2008. [18] K. Levi and Y. Weiss, 'Learning object detection from a small number of examples: the importance of good features,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, pp. II-53-II-60. [19] C. Papageorgiou and T. Poggio, 'A Trainable System for Object Detection,' International Journal of Computer Vision, vol. 38, pp. 15-33, 2000. [20] P. Viola and M. Jones, 'Rapid object detection using a boosted cascade of simple features,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. 511-518. [21] S. L. Phung and A. Bouzerdoum, 'Detecting People in Images: An Edge Density Approach,' in IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, pp. I-1229-I-1232. [22] R. E. Schapire and Y. Singer, 'Improved Boosting Algorithms Using Confidence-rated Predictions,' Machine Learning, vol. 37, pp. 297-336, 1999. [23] C. Huang and R. Nevatia, 'High performance object detection by collaborative learning of Joint Ranking of Granules features,' in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 41-48. [24] D. G. Lowe, 'Distinctive Image Features from Scale-Invariant Keypoints,' International Journal of Comput. Vision, vol. 60, pp. 91-110, 2004. [25] J. Vermaak, A. Doucet, and P. Perez, 'Maintaining multimodality through mixture tracking,' in IEEE International Conference on Computer Vision, 2003, pp. 1110-1116 vol.2. [26] O. Lanz, 'Approximate Bayesian multibody tracking,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1436-1449, 2006. [27] C.-H. Kuo, C. Huang, and R. Nevatia, 'Multi-target tracking by on-line learned discriminative appearance models,' in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 685-692. [28] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, 'Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, pp. 1820-1833, 2011. [29] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool, 'Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1683-1698, 2008. [30] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, 'A mobile vision system for robust multi-person tracking,' in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8. [31] M. Isard and A. Blake, 'CONDENSATION—Conditional Density Propagation for Visual Tracking,' International Journal of Computer Vision, vol. 29, pp. 5-28, 1998. [32] M. Betke, E. Haritaoglu, and L. S. Davis, 'Real-time multiple vehicle detection and tracking from a moving vehicle,' Machine Vision and Applications, vol. 12, pp. 69-83, 2000. [33] S.-S. Huang, C.-J. Chen, P.-Y. Hsiao, and L.-C. Fu, 'On-board vision system for lane recognition and front-vehicle detection to enhance driver's awareness,' in IEEE Conference on Robotics and Automation, 2004, pp. 2456-2461. [34] S. Sivaraman and M. M. Trivedi, 'Improved vision-based lane tracker performance using vehicle localization,' in IEEE Intelligent Vehicles Symposium, 2010, pp. 676-681. [35] A. Eidehall and F. Gustafsson, 'Combined road prediction and target tracking in collision avoidance,' in IEEE Intelligent Vehicles Symposium, 2004, pp. 619-624. [36] C.-Y. Huang, S.-S. Huang, Y.-M. Chan, Y.-H. Chiu, L.-C. Fu, and P.-Y. Hsiao, 'Driver Assistance System Using Integrated Information from Lane Geometry and Vehicle Direction,' in IEEE Intelligent Transportation Systems Conference, 2007, pp. 986-991. [37] D. Hoiem, A. Efros, and M. Hebert, 'Putting Objects in Perspective,' International Journal of Computer Vision, vol. 80, pp. 3-15, 2008. [38] C. Wojek, S. Roth, K. Schindler, and B. Schiele, 'Monocular 3D Scene Modeling and Inference: Understanding Multi-Object Traffic Scenes,' in European Confernce on Computer Vision, 2010, pp. 467-481. [39] P. Sudowe and B. Leibe, 'Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video,' in International Conference on Computer Vision Systems, Berlin, Heidelberg, 2011, pp. 11-20. [40] M. Nieto, J. A. Laborda, and L. Salgado, 'Road environment modeling using robust perspective analysis and recursive Bayesian segmentation,' Machine Vision and Applications, vol. 22, pp. 927-945, 2011. [41] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, '3D Traffic Scene Understanding From Movable Platforms,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, pp. 1012-1025, 2014. [42] A. Geiger, 'Probabilistic models for 3D urban scene understanding from movable platforms,' PhD Thesis, KIT, 2013. [43] L. G. Roberts. (1963). Machine Perception of Three-Dimensional Solids. Available: http://www.packet.cc/files/mach-per-3D-solids.html [44] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, 'Object Detection with Discriminatively Trained Part-Based Models,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010. [45] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. New York: Academic, 1988. [46] S.-Y. Hung, Y.-M. Chan, B.-F. Lin, L.-C. Fu, P.-Y. Hsiao, and S.-S. Huang, 'Tracking and detection of lane and vehicle integrating lane and vehicle information using PDAF tracking model,' in IEEE Conference on Intelligent Transportation Systems, St. Louis, 2009, pp. 603-608. [47] Y. Bar-Shalom, F. Daum, and J. Huang, 'The probabilistic data association filter,' IEEE Control Systems, vol. 29, pp. 82-100, 2009. [48] C.-M. Huang, D. Liu, and L.-C. Fu, 'Visual Tracking in Cluttered Environments Using the Visual Probabilistic Data Association Filter,' IEEE Transactions on Robotics, vol. 22, pp. 1292-1297, 2006. [49] A. Eidehall and F. Gustafsson, 'Obtaining reference road geometry parameters from recorded sensor data,' in IEEE Intelligent Vehicles Symposium, 2006, pp. 256-260. [50] C.-C. Wang, S.-S. Huang, and L.-C. Fu, 'Driver assistance system for lane detection and vehicle recognition with night vision,' in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3530-3535. [51] G. Liu, F. Worgotter, and I. Markelic, 'Lane shape estimation using a Partitioned Particle filter for autonomous driving,' in IEEE International Conference on Robotics and Automation, 2011, pp. 1627-1633. [52] R. K. Satzoda, S. Suchitra, and T. Srikanthan, 'Robust extraction of lane markings using gradient angle histograms and directional signed edges,' in IEEE Intelligent Vehicles Symposium, 2012, pp. 754-759. [53] P. Moghadam, J. A. Starzyk, and W. S. Wijesoma, 'Fast Vanishing-Point Detection in Unstructured Environments,' IEEE Transactions on Image Processing, vol. 21, pp. 425-430, 2012. [54] R. Labayrade, J. Douret, J. Laneurit, and R. Chapuis, 'A Reliable and Robust Lane Detection System Based on the Parallel Use of Three Algorithms for Driving Safety Assistance,' IEICE Transactions on Information and Systems, vol. E89D, pp. 2092-2100, 2006. [55] Z. Kim, 'Robust Lane Detection and Tracking in Challenging Scenarios,' IEEE Intelligent Transportation Systems, vol. 9, pp. 16-26, 2008. [56] H.-Y. Cheng, B.-S. Jeng, P.-T. Tseng, and K. C. Fan, 'Lane Detection With Moving Vehicles in the Traffic Scenes,' IEEE Transactions on Intelligent Transportation Systems, vol. 7, pp. 571-582, 2006. [57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks,' in Advances in neural information processing systems, 2012, pp. 1097-1105. [58] R. Girshick, 'Fast R-CNN,' in IEEE International Conference on Computer Vision, 2015, pp. 1440-1448. [59] S. Ren, K. He, R. Girshick, and J. Sun, 'Faster R-CNN: Towards real-time object detection with region proposal networks,' in Advances in Neural Information Processing Systems, 2015, pp. 91-99. [60] M. D. Zeiler and R. Fergus, 'Visualizing and understanding convolutional networks,' in ECCV, 2014, pp. 818-833. [61] A. Geiger, P. Lenz, and R. Urtasun, 'Are we ready for autonomous driving? the kitti vision benchmark suite,' in IEEE Conference on Computer Vision and Pattern Recognition 2012, pp. 3354-3361. [62] E. Richardson, S. Peleg, and M. Werman, 'Scene geometry from moving objects,' in IEEE International Conference on Advanced Video and Signal Based Surveillance, 2014, pp. 13-18. [63] A. Oliva and A. Torralba, 'The role of context in object recognition,' Trends in cognitive sciences, vol. 11, pp. 520-527, 2007. [64] S. K. Divvala, 'Context and Subcategories for Sliding Window Object Recognition,' Doctoral Dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2012. [65] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, 'On Combining Classifiers,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 226-239, 1998. [66] N. Apostoloff and A. Zelinsky, 'Vision In and Out of Vehicles: Integrated Driver and Road Scene Monitoring,' The International Journal of Robotics Research, vol. 23, pp. 513-538, April 1, 2004 2004. [67] S. Bota and S. Nedesvchi, 'Multi-feature walking pedestrians detection for driving assistance systems,' IET Intelligent Transport Systems, vol. 2, pp. 92-104, Jun 2008. [68] J. Matas, C. Galambos, and J. Kittler, 'Robust detection of lines using the progressive probabilistic hough transform,' Computer Vision and Image Understanding, vol. 78, pp. 119-137, 2000. [69] M. Nieto and L. Salgado, 'Real-time robust estimation of vanishing points through nonlinear optimization,' in Real-Time Image and Video Processing, 2010. [70] R. Girshick, J. Donahue, T. Darrell, and J. Malik, 'Rich feature hierarchies for accurate object detection and semantic segmentation,' in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580-587. [71] X. Wang, M. Yang, S. Zhu, and Y. Lin, 'Regionlets for Generic Object Detection,' in IEEE International Conference on Computer Vision, 2013, pp. 17-24. [72] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, 'Selective Search for Object Recognition,' International Journal of Computer Vision, vol. 104, pp. 154-171, 2013/09/01 2013. [73] A. Milan, S. Roth, and K. Schindler, 'Continuous Energy Minimization for Multitarget Tracking,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, pp. 58-72, 2014. [74] Y. Xiang, A. Alahi, and S. Savarese, 'Learning to track: Online multi-object tracking by decision making,' in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4705-4713. [75] K. Bernardin and R. Stiefelhagen, 'Evaluating multiple object tracking performance: the CLEAR MOT metrics,' J. Image Video Process., vol. 2008, pp. 1-10, 2008. [76] E. T. Hall, The hidden dimension. Garden City, N.Y.: Doubleday, 1966. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48959 | - |
| dc.description.abstract | 因為有各式各樣的挑戰,使得能夠穩定偵測在影片中的行人是困難的。在偵測行人的各種鑑別式特徵中,其中一個最成功的當屬方向梯度直方圖(Histogram of Oriented Gradients, HOGs)。雖然主要的輪廓資訊成功的在HOG中描述,背景雜亂分佈擾亂了梯度資訊。因此,一個基於HOG的擴充,名為細粒方向梯度直方圖(Histogram of Oriented Gradient of Granules, HOGGs)進而被提出。相較於HOG對於每個像素計算梯度,HOGGs 計算小區域之間的梯度。背景雜亂問題因此可因為額外的區域資訊而解決。
此外,一個穩健的多車輛與多車道偵測並且同時整合車道與汽車資訊之系統在論文中開發。大部份的研究目前只各別分開偵測車道或是汽車。為了達成更加可靠的結果,車道線與汽車之間可相互支持的關係應該被建模考量。基於此,本論文透過機率資料關聯濾波器(Probabilistic Data Association Filter)整合車道與汽車之空間與時間資訊。因為結合汽車與車道能夠改善汽車與車道追蹤的一致性,因而改善汽車偵測的效能。在實驗中也驗證了所提出的系統可以可靠有效的偵測多車道與多車輛。 在影片中穩定的同時偵測路上行人與車輛亦是具有挑戰性的問題。一些文獻主要只偵測或追蹤單一種目標物。然而,系統偵測或是追蹤效能可以透過幾合資訊的幫助而有效改善。因此,在本論文中不是分別偵測行人或是汽車,而是提出了結合先前所述之整合異質性資訊的框架。在此,行人與汽車偵測很自然的透過了場景幾合資訊結合。相機的俯仰角透過的創新的消失線估測法而取得。不採用傳統透過長直線交點做為消失點之方法,被追蹤的道路上物體的資訊被拿來參考。具體而言,每個被追蹤的路上汽車或是行人會對可能的消失線位置投票。因此,消失線的位置即使在雜亂或是擁擠的背景中仍可被判斷。因此場景幾合資訊可以在有挑戰性的環境中被估計。透過貝氏網路,此資訊可以幫助改善偵測結果。最後,為了驗證效果,在KITTI資料集中作了大量的實驗。目前在該資料集中表現領先的偵測器Regionlet偵測器,可以因為本方法得到不錯的改善。 | zh_TW |
| dc.description.abstract | To detect people in a video sequence robustly is hard due to various challenges. One of the most successful discriminative features for finding people goes to the Histogram of Oriented Gradients (HOGs). Although the major contour information is encoded in the HOG feature well, background clutter disturbs the gradient information. Thus, an extension of the HOGs, called histogram of oriented of gradient of granules, is proposed. Instead of collecting gradient information over each pixel, the histograms of gradients of small regions are computed. The clutter background problem can be solved by encoding extra region information.
A robust system for detecting on-road multiple vehicles and multiple lanes while integrating both lane and vehicle information is designed. Most researches so far can only detect single/multiple lanes or vehicles separately. To achieve more reliable results, the relationship between lane and vehicle which can support detection of either of them should be modeled. Following this, we thus integrate spatial and temporal information of lanes and vehicles through employment of the probabilistic data association filter model. Such integration will improve the consistency of vehicle and lane tracking, and hence increase the performance of on-road vehicle detection. The experiments have validated our hereby proposed system for detecting multiple vehicles and multiple lanes satisfactorily and reliably. To robustly detect people and vehicle on the road in a video sequence is also a challenging problem. Most researches focus on detecting or tracking of specific targets only. Nevertheless, the performance of the system conceivably can be improved with the help of the geometry information. Thus, in this research, instead of detecting vehicle or pedestrian individually, a framework integrating the aforementioned heterogeneous information is proposed. Here, our approach let the system naturally integrate different information using the scene geometric information. The camera’s pitch angle is estimated with a novel vanishing point estimator. Instead of detecting the vanishing points using line intersection approach, the object information from tracker are also considered. Specifically, the detected vehicle or pedestrian will cast votes for the hypothesized horizon line. The vanishing line can be detected even when the scenes are cluttered or crowded, and thus the geometric information can be estimated under challenging circumstance. Such information of scene can help the system refine our detection results through Bayes’ network. Finally, to verify the performance of the system, comprehensive experiments have been conducted with the KITTI dataset. It is quite promising that the state-of-the-art detector, in our case, Regionlet detector, can be improved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:12:23Z (GMT). No. of bitstreams: 1 ntu-105-D94922035-1.pdf: 3907099 bytes, checksum: 08895d5b3a38b326207e823d7fa1f991 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | CONTENTS
口試委員審定書 i 誌 謝 ii 摘 要 iii Abstract …. v List of Figures xii List of Tables xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Challenges 6 1.3 Research Scopes and Contributions 7 1.4 Organization 9 Chapter 2 Related Work and Preliminaries 11 2.1 Pedestrian Detection 11 2.1.1 Histogram of Oriented Gradients (HOGs) 12 2.1.2 Support Vector Machine 15 2.2 Tracking Framework 16 2.2.1 Tracking by Detection 16 2.2.2 Particle Filter 17 2.3 Integration Approaches 18 2.3.1 Lane and Vehicle Integration 18 2.3.2 Context Integration 19 2.4 Camera Calibration 20 2.4.1 Camera Configuration 20 2.4.2 Transformation Formulation 22 2.4.3 Vanishing Point 23 Chapter 3 Pedestrian Detection Using Histogram of Orientation Gradient of Granule Feature 24 3.1 Histogram of Orientation Gradient of Granule Feature 24 3.1.1 Cell Configuration 25 3.1.2 The Voting of Each Block 26 3.1.3 Block Configuration 27 3.1.4 System Flow of the HOGG Extraction 28 3.2 Pedestrian Detection System 29 3.2.1 Human Candidate Generation 29 3.2.2 Pedestrian Classifier 30 3.2.3 Non-maximum Suppression 30 3.3 Experiments 31 3.3.1 Environment Settings 31 3.3.2 HOG+HOGG based Classifier Learning 31 3.3.3 HOG+HOGG based Classifier Learning Parameters 32 3.3.4 Error Analysis of HOGG 32 3.3.5 Performance of Different Channels 33 3.4 Summary 37 Chapter 4 Lane and Vehicle Detection and Tracking 39 4.1 Integration Approach 42 4.1.1 PDAF Tracking Framework 43 4.2 Detection with Integration 46 4.2.1 Detecting Lanes 46 4.2.2 Detecting Vehicles 51 4.2.3 Integration of Detections using Region of Interests 53 4.3 Tracking with Integration using PDAF 53 4.3.1 Tracking Lanes 53 4.3.2 Tracking Vehicles 57 4.4 Experiments 58 4.4.1 Environmental Setup 58 4.4.2 Performance Analysis 60 4.5 Summary 62 Chapter 5 Pedestrian and Vehicle Detection and Tracking with Environment Information 63 5.1 On-Road Object Tracking with Scene Information 65 5.1.1 On-Road Object Tracking 66 5.1.2 Scene Modeling 71 5.2 Vanishing Point Estimation with Object Information 72 5.2.1 Vanishing Point Detection 72 5.2.2 The Probability of Vanishing Point Given Tracked Objects 73 5.2.3 Vanishing Point Tracking with Object Information 77 5.3 Pedestrian and Vehicle Detection and Tracking 78 5.3.1 Pedestrian and Vehicle Detection 78 5.3.2 Pedestrian and Vehicle Tracking by Detection 80 5.4 Experiments 82 5.4.1 System Parameters 82 5.4.2 Horizon Line Estimation Analysis 83 5.4.3 Object Tracking Performance Analysis 87 5.5 Summary 91 Chapter 6 Conclusions and Future Work 92 Reference 94 | |
| dc.language.iso | en | |
| dc.subject | 物體追蹤 | zh_TW |
| dc.subject | 先進駕駛輔助系統 | zh_TW |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 行人偵測 | zh_TW |
| dc.subject | 汽車偵測 | zh_TW |
| dc.subject | 消失線估計 | zh_TW |
| dc.subject | 車道偵測 | zh_TW |
| dc.subject | Pedestrian Detection | en |
| dc.subject | Computer Vision | en |
| dc.subject | Advance Driver Assistance System | en |
| dc.subject | Vanishing Line Estimation | en |
| dc.subject | Object Tracking | en |
| dc.subject | Lane Detection | en |
| dc.subject | Vehicle Detection | en |
| dc.title | 引入環境資訊之路上物體偵測與追蹤 | zh_TW |
| dc.title | On-Road Obstacle Detection and Tracking with Environment Information | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 蕭培墉(Pei-yung Hsiao) | |
| dc.contributor.oralexamcommittee | 陳世旺,傅楸善,莊永裕,方瓊瑤,蔡欣穆 | |
| dc.subject.keyword | 先進駕駛輔助系統,電腦視覺,行人偵測,汽車偵測,車道偵測,物體追蹤,消失線估計, | zh_TW |
| dc.subject.keyword | Advance Driver Assistance System,Computer Vision,Pedestrian Detection,Vehicle Detection,Lane Detection,Object Tracking,Vanishing Line Estimation, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU201603537 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| Appears in Collections: | 資訊工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-1.pdf Restricted Access | 3.82 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
