Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭寧馨(Ning-Shin Shaw)
dc.contributor.authorYa-Wei Linen
dc.contributor.author林亞葳zh_TW
dc.date.accessioned2021-06-15T11:12:09Z-
dc.date.available2021-08-23
dc.date.copyright2016-08-23
dc.date.issued2016
dc.date.submitted2016-08-22
dc.identifier.citation1. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell 2010; 142: 24-38.
2. Arora S. Iron Metabolism. InTech, 2012.
3. 臺灣衛生福利部國民健康署. 第七版國人膳食營養素參考攝取量, 2011.
4. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem Sciences 2016; 41: 274-286.
5. Haile D, Hentze M, Rouault T, Harford J, Klausner R. Regulation of interaction of the iron-responsive element binding protein with iron-responsive RNA elements. Molecular and Cellular Biology 1989; 9: 5055-5061.
6. Rouault TA, Tang CK, Kaptain S, Burgess WH, Haile DJ, Samaniego F et al. Cloning of the cDNA encoding an RNA regulatory protein--the human iron-responsive element-binding protein. Proceedings of the National Academy of Sciences 1990; 87: 7958-7962.
7. Guo B, Brown FM, Phillips JD, Yu Y, Leibold EA. Characterization and expression of iron regulatory protein 2 (IRP2). Presence of multiple IRP2 transcripts regulated by intracellular iron levels. Journal of Biological Chemistry 1995; 270: 16529-16535.
8. Rouault TA. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells, Molecules, and Diseases 2002; 29: 309-314.
9. Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Research 2011; 21: 245-257.
10. Kelsey JL, Horn-Ross PL. Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiologic Reviews 1993; 15: 7-16.
11. Brennan K, Offiah G, McSherry EA, Hopkins AM. Tight junctions: a barrier to the initiation and progression of breast cancer? BioMed Research International 2009; 2010.
12.  The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61-70.
13. 臺灣衛生福利部統計處. 死因統計, 2014.
14. Pinnix ZK ML, Wang W, D'Agostino R Jr, Kute T, Willingham MC, Hatcher H, Tesfay L, Sui G, Di X, Torti SV, Torti FM. Ferroportin and Iron Regulation in Breast Cancer Progression and Prognosis. Science Translational Medicine 2010; 2: 43ra56-43ra56.
15. Wang W, Deng Z, Hatcher H, Miller L, Di X, Tesfay L et al. IRP2 Regulates Breast Tumor Growth. Cancer Research 2014.
16. Kallianpur AR, Lee S-A, Gao Y-T, Lu W, Zheng Y, Ruan Z-X et al. Dietary animal-derived iron and fat intake and breast cancer risk in the Shanghai Breast Cancer Study. Breast Cancer Research and Treatment 2008; 107: 123-132.
17. Van Maele-Fabry G, Lombaert N, Lison D. Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: A systematic review and meta-analysis. Environment International 2016; 86: 1-13.
18. Kabat GC, Miller AB, Jain M, Rohan TE. Dietary iron and heme iron intake and risk of breast cancer: A prospective cohort study. Cancer Epidemiology Biomarkers & Prevention 2007; 16: 1306-1308.
19. Bae Y-J, Yeon J-Y, Sung C-J, Kim H-S, Sung M-K. Dietary intake and serum levels of iron in relation to oxidative stress in breast cancer patients. Journal of Clinical Biochemistry and Nutrition 2009; 45: 355-360.
20. Gaur A, Collins H, Wulaningsih W, Holmberg L, Garmo H, Hammar N et al. Iron metabolism and risk of cancer in the Swedish AMORIS study. Cancer Causes Control 2013; 24: 1393-1402.
21. Ludwig H, Van Belle S, Barrett-Lee P, Birgegård G, Bokemeyer C, Gascon P et al. The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. European Journal of Cancer 2004; 40: 2293-2306.
22. Orlandi R, De Bortoli M, Ciniselli C, Vaghi E, Caccia D, Garrisi V et al. Hepcidin and ferritin blood level as noninvasive tools for predicting breast cancer. Annals of Oncology 2014.
23. Lamy P-J, Durigova A, Jacot W. Iron homeostasis and anemia markers in early breast cancer. Clinica Chimica Acta 2014; 434: 34-40.
24. Rossiello R, Carriero MV, Giordano G. Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue. Journal of Clinical Pathology 1984; 37: 51-55.
25. Shepil O, Lukyanova N, Polischuk L, Antipova S. A study of transferrin and ferritin expression in tumor cells of patients with breast cancer. ????????? 2014: 108-112.
26. Mannello F, Tonti GA, Medda V, Simone P, Darbre PD. Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients. Journal of Applied Toxicology 2011; 31: 262-269.
27. Torti SV, Torti FM. Ironing out cancer. Cancer Res 2011; 71: 1511-1514.
28. Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Vasyl’F C, Beland FA et al. Role of ferritin alterations in human breast cancer cells. Breast Cancer Research and Treatment 2011; 126: 63-71.
29. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology 2014; 15: 135-147.
30. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060-1072.
31. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cellular and Molecular Life Sciences 2016: 1-15.
32. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Annals of the New York Academy of Sciences 2016.
33. Lemberg K. Ferroptosis: A novel form of cancer cell death induced by the small molecule erastin. Doctor thesis, Columbia University, 2011.
34. Angeli JPF, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology 2014; 16: 1180-1191.
35. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society 2014; 136: 4551-4556.
36. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 2014; 3: e02523.
37. Hayano M, Yang W, Corn C, Pagano N, Stockwell B. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death and Differentiation 2015.
38. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 2015; 356: 971-977.
39. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R et al. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2015.
40. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & Biology 2008; 15: 234-245.
41. Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Molecular & Cellular Oncology 2015; 2: e1054549.
42. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156: 317-331.
43. Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Mazière JC, Chauffert B et al. Iron‐dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. International Journal of Cancer 2013; 133: 1732-1742.
44. Galluzzi L, Bravo-San Pedro J, Kroemer G. Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death and Differentiation 2015; 22: 1237-1238.
45. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520: 57-62.
46. Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Research 2014; 34: 6417-6422.
47. Galmiche A, Chauffert B, Barbare J-C. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Letters 2014; 346: 159-162.
48. Lőrincz T, Jemnitz K, Kardon T, Mandl J, Szarka A. Ferroptosis is involved in acetaminophen induced cell death. Pathology and Oncology Research 2015; 21: 1115-1121.
49. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS chemical biology 2015; 10: 1604-1609.
50. Fujii J, Ito J, Zhang X, Kurahashi T. Unveiling the roles of the glutathione redox system in vivo by analyzing genetically modified mice. Journal of Clinical Biochemistry and Nutrition 2011; 49: 70-78.
51. Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N et al. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. Journal of Cell Science 2009; 122: 1906-1916.
52. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483-487.
53. Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM et al. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. The Journal of Biological Chemistry 2013; 288: 11920-11929.
54. Yagoda N, Von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447: 865-869.
55. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 2003; 3: 285-296.
56. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2015; 2: 517.
57. Hecker PA LJ, Gupte SA, Recchia FA, Stanley WC. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology 2013; 304: H491-500.
58. Kang Y, Tiziani S, Park G, Kaul M, Paternostro G. Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nature Communications 2014; 5: 3672.
59. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chemical Biology 2015; 10: 1604-1609.
60. Pérez-Chacón G, Astudillo AM, Balgoma D, Balboa MA, Balsinde J. Control of free arachidonic acid levels by phospholipases A 2 and lysophospholipid acyltransferases. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2009; 1791: 1103-1113.
61. Cooper DE, Young PA, Klett EL, Coleman RA. Physiological consequences of compartmentalized acyl-CoA metabolism. Journal of Biological Chemistry 2015; 290: 20023-20031.
62. Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM et al. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife 2015; 4: e06328.
63. Liu Y, Wang W, Li Y, Xiao Y, Cheng J, Jia J. The 5-Lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biological and Pharmaceutical Bulletin 2015; 38: 1234-1239.
64. Rådmark O WO, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends in biochemical sciences 2007; 32: 332-341.
65. James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metabolism and Disposition 2003; 31: 1499-1506.
66. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Molecular Cell 2015; 59: 298-308.
67. Abdul Y, Hussen N, Ergul A. Tlr-4 Activation Decreases Brain Endothelial Cell Survival in Hypoxia/reoxygenation in Diabetes: Role of Necroptosis and Ferroptosis. Stroke 2016.
68. Chen L, Hambright WS, Na R, Ran Q. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. The Journal of Biological Chemistry 2015; 290: 28097-28106.
69. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F et al. Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences 2014; 111: 16836-16841.
70. Linkermann A BJ, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proceedings of the National Academy of Sciences 2013; 110: 12024-12029.
71. Linkermann A HM, Kunzendorf Ulrich, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia‐reperfusion injury. American Journal of Transplantation 2013; 13: 2797-2804.
72. Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. The Journal of Experimental Medicine 2015; 212: 555-568.
73. Gorrini C HI, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery 2013; 12: 931-947.
74. Kansanen E KS, Leinonen H., Levonen AL. The Keap1-NRF2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biology 2013; 1: 45-49.
75. FA. V. Molecular basis of oxidative stress: chemistry, mechanisms, and disease pathogenesis. John Wiley & Sons, 2013.
76. Itoh K WN, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by NRF2 through binding to the amino-terminal Neh2 domain. Genes & Development 1999; 13: 76-86.
77. Sporn MB LK. NRF2 and cancer: the good, the bad and the importance of context. Sporn MB, Liby KT 2012; 12: 564-571.
78. Holland R HA, Eggler AL, Mesecar AD, Fabris D, Fishbein JC. Prospective type 1 and type 2 disulfides of Keap1 protein. Chemical Research in Toxicology 2008; 21: 2051-2060.
79. Jeong WS JM, Kong AN. NRF2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxidants & Redox Signaling 2006; 8: 99-106.
80. Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med 2016.
81. Yuan X XC, Pan Z, Keum YS, Kim JH, Shen G, Yu S, Oo KT, Ma J, Kong AN. Butylated hydroxyanisole regulates ARE‐mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Molecular Carcinogenesis 2006; 45: 841-850.
82. McMahon M TN, Itoh K, Yamamoto M, Hayes JD. Redox-regulated turnover of NRF2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. Journal of Biological Chemistry 2004; 279: 31556-31567.
83. Jain AK JA. GSK-3β acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. Journal of Biological Chemistry 2007; 282: 16502-16510.
84. Rada P RA, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the NRF2 transcription factor in a Keap1-independent manner. Molecular and Cellular Biology 2011; 31: 1121-1133.
85. Miao W HL, Scrivens PJ, Batist G. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. Journal of Biological Chemistry 2005; 280: 20340-20348.
86. Köhle C BK. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and NRF2. Biochem Pharmacology 2007; 73: 1853-1862.
87. Tsuji Y AH, Whitman SP, Morrow CS, Torti SV, Torti FM. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Molecular and Cellular Biology 2000; 20: 5818-5827.
88. Pietsch EC CJ, Torti FM, Torti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. Journal of Biological Chemistry 2003; 278: 2361-2369.
89. Wise CD DD. Degradation of hemoglobin+ hemin to biliverdin by new cell-free enzyme system obtained from hemophagous organ of dog placenta. Federation Proceedings, vol. 23. FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998, 1964, pp 223-&.
90. Tenhunen R MH, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proceedings of the National Academy of Sciences 1968; 61: 748-755.
91. Agnieszka Loboda MD, Elzbieta Pyza, Alicja Jozkowicz, Jozef Dulak. Role of NRF2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences 2016: 1-27.
92. Hintze KJ TE. DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 15048-15052.
93. Lisa Becks MP, Hannah Burson, Christopher Christophe, Mason Broadway, Ken Itoh,, Masayuki Yamamoto MM, Elysse Orchard, Runhua Shi, Jerry McLarty, Kevin Pruitt,, Songlin Zhang HEK-H. Aggressive mammary carcinoma progression in NRF2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. BMC Cancer 2010; 10: 1-17.
94. Satoh H, Moriguchi T, Taguchi K, Takai J, Maher JM, Suzuki T et al. NRF2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 2010; 31: 1833-1843.
95. Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M, Daemen A et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013; 24: 450-465.
96. Narang VS, Pauletti GM, Gout PW, Buckley DJ, Buckley AR. Suppression of cystine uptake by sulfasalazine inhibits proliferation of human mammary carcinoma cells. Anticancer Research 2002; 23: 4571-4579.
97. Bijnsdorp IV, Giovannetti E, Peters GJ. Analysis of drug interactions. Cancer Cell Culture: Methods and Protocols 2011: 421-434.
98. Torti SV, Torti FM. Cellular iron metabolism in prognosis and therapy of breast cancer. Critical Reviews™ in Oncogenesis 2013; 18.
99. Wang F, Yang Y. Suppression of the xCT–CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin. Breast Cancer Research and Treatment 2014; 147: 203-210.
100. Guan J, Lo M, Dockery P, Mahon S, Karp CM, Buckley AR et al. The xc- cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemotherapy and Pharmacology 2009; 64: 463-472.
101. Yoshikawa M, Tsuchihashi K, Ishimoto T, Yae T, Motohara T, Sugihara E et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Research and Treatment 2013; 73: 1855-1866.
102. Huang Z, Guo K-J, Guo R-X, He S-G. Effects of 5-fluouracil combined with sulfasalazine on human pancreatic carcinoma cell line BxPC-3 proliferation and apoptosis in vitro. Hepatobiliary & Pancreatic Diseases International 2007; 6: 312-320.
103. Narang VS, Pauletti GM, Gout PW, Buckley DJ, Buckley AR. Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth-inhibitory activity of Doxorubicin. Chemotherapy 2007; 53: 210-217.
104. Lay J-D, Hong C-C, Huang J-S, Yang Y-Y, Pao C-Y, Liu C-H et al. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Research 2007; 67: 3878-3887.
105. Kagami T, Wang Y, Tien A, Watahiki A, Lo M, Xue H et al. Sulfasalazine enhances growth-inhibitory activity of doxorubicin: Potential use in combination chemotherapy of advanced prostate cancer. Cancer Research 2007; 67: LB-322-LB-322.
106. Yang Y, Yee D. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC. Cancer Research 2014; 74: 2295-2305.
107. Lo M, Ling V, Low C, Wang Y, Gout P. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Current Oncology 2010; 17: 9.
108. Ma M-z, Chen G, Wang P, Lu W-h, Zhu C-f, Song M et al. Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Letters 2015; 368: 88-96.
109. Lo M, Wang YZ, Gout PW. The xc- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. Journal of Cellular Physiology 2008; 215: 593-602.
110. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW et al. The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxidants & Redox Signaling 2013; 18: 522-555.
111. Sontheimer H, Bridges RJ. Sulfasalazine for brain cancer fits. Expert Opinion on Investigational Drugs 2012; 21: 575-578.
112. Sharma MK, Seidlitz EP, Singh G. Cancer cells release glutamate via the cystine/glutamate antiporter. Biochemical and Biophysical Research Communications 2010; 391: 91-95.
113. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2015; 2: 517-532.
114. Kwon M-Y, Park E, Lee S-J, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 2015; 6: 24393.
115. Pledgie-Tracy A, Sobolewski MD, Davidson NE. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Molecular Cancer Therapeutics 2007; 6: 1013-1021.
116. Pawlik A, Wiczk A, Kaczyńska A, Antosiewicz J, Herman-Antosiewicz A. Sulforaphane inhibits growth of phenotypically different breast cancer cells. European Journal of Nutrition 2013; 52: 1949-1958.
117. Hussain A, Javeria M, Sathyen AP, Salema B, Qurrat El-Ain N, Geetganga H et al. Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine. Asian Pacific Journal of Cancer Prevention 2013; 14: 5855-5860.
118. Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, Ho E. Epigenetic regulation by sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. Current Pharmacology Reports 2015; 1: 102-111.
119. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 2007; 28: 1485-1490.
120. Bao C, Ko J, Park H-C, Kim MC, Kim J, Auh J-H et al. Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells. Food Science and Biotechnology 2015; 24: 347-351.
121. Kang HJ, Hong YB, Kim HJ, Wang A, Bae I. Bioactive food components prevent carcinogenic stress via NRF2 activation in BRCA1 deficient breast epithelial cells. Toxicology Letters 2012; 209: 154-160.
122. Wu T, Harder BG, Wong PK, Lang JE, Zhang DD. Oxidative stress, mammospheres and NRF2-new implication for breast cancer therapy? Molecular Carcinogenesis 2014.
123. Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW et al. Brusatol provokes a rapid and transient inhibition of NRF2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of NRF2. Free Radical Biology and Medicine 2015; 78: 202-212.
124. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the NRF2-mediated defense mechanism. Proceedings of the National Academy of Sciences 2011; 108: 1433-1438.
125. Vinceti M, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers M et al. Selenium for preventing cancer. Journal of Evidence-Based Medicine 2014; 3.
126. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends in biochemical sciences 2014; 39: 112-120.
127. Zago MP, Oteiza PI. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radical Biology and Medicine 2001; 31: 266-274.
128. Powell SR. The antioxidant properties of zinc. The Journal of Nutrition 2000; 130: 1447S-1454S.
129. Chiang E, Bostwick D, Waters D. Selenium form-dependent anti-carcinogenesis: Preferential elimination of oxidant-aamaged prostate cancer cell populations by methylseleninic acid is not shared by selenite. Vitamins & Minerals 2015; 04.
130. Yang G, Yin S, Zhou R, Gu L, Yan B, Liu Y. Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II: Relation between Se-intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. Journal of Trace Elements and Electrolytes in Health and Disease 1989; 3: 123-130.
131. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh III HJ et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016: 00-00.
132. Harris ED. Regulation of antioxidant enzymes. The FASEB Journal 1992; 6: 2675-2683.
133. Kumar C, Igbaria A, D'autreaux B, Planson AG, Junot C, Godat E et al. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol‐redox control. The EMBO journal 2011; 30: 2044-2056.
134. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. Journal of amino acids 2012; 2012.
135. Pedro M, Isaac T. Melatonin: Present and future. Nova Publishers, 2007.
136. Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 2016.
137. Harris HR, Bergkvist L, Wolk A. Selenium intake and breast cancer mortality in a cohort of Swedish women. Breast cancer research and treatment 2012; 134: 1269-1277.
138. Karp DD, Lee SJ, Keller SM, Wright GS, Aisner S, Belinsky SA et al. Randomized, double-blind, placebo-controlled, phase III chemoprevention trial of selenium supplementation in patients with resected stage I non–small-cell lung cancer: ECOG 5597. Journal of Clinical Oncology 2013; 31: 4179-4187.
139. Kristal AR, Darke AK, Morris JS, Tangen CM, Goodman PJ, Thompson IM et al. Baseline selenium status and effects of selenium and vitamin E supplementation on prostate cancer risk. Journal of the National Cancer Institute 2014; 106: djt456.
140. Klein EA, Thompson IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Jama 2011; 306: 1549-1556.
141. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death & Disease 2013; 4: e592.
142. Huang X. Does iron have a role in breast cancer? The Lancet Oncology 2008; 9: 803-807.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48949-
dc.description.abstract鐵對細胞具有雙面效應,是細胞生長所必需,但也可經由芬頓反應 (fenton reaction) 產生活性氧ROS而對細胞造成毒性與傷害。鐵依賴性死亡ferroptosis是2003年新發現的細胞死亡模式,屬於非凋亡性細胞死亡模式的一種。透過鐵代謝衍生的脂質過氧化 (lipid peroxidation, LROS) 累積而造成細胞死亡,並且受細胞內信號路徑嚴密的調控。有別於以往發現之死亡形態,ferroptosis 的形態、生化標記或是基因特徵皆不同於apoptosis、necrosis以及autophagic。Ferroptosis的路徑包括抑制還原態穀胱甘肽 (GSH) 的合成和利用,造成GSH耗竭,最終產生脂質過氧化效應和細胞死亡;以上任一節點受到干擾,皆可能影響ferroptosis的發生。已知乳癌細胞具有堆積鐵的能力,其代謝鐵池增大有利於乳癌細胞生長,而且惡性程度越高,堆積鐵的能力越強。因此本研究的目的是探討ferroptosis對乳癌細胞的作用。利用三陰性乳癌細胞株MDA-MB-231對柳氮磺口比口定水楊酸 (sulfasalazine, SAS) 敏感以及強積鐵能力兩種特性,實驗設計誘導MDA-MB-231細胞死亡,利用專一性抑制劑ferrostatin-1並檢測ferroptosis 分子特徵,以及鐵相關抗氧化蛋白質NRF2、HO-1及ferritin (FTH) 的表現,並評估抗氧化礦物質硒和鋅化合物之影響。實驗結果確認SAS與鐵共同處理可使MDA-MB-231細胞發生ferroptosis,並受ferrostatin-1之抑制,細胞死亡前有ROS以及LROS量增加的現象。隨著SAS與鐵的劑量增加,細胞的NRF2以及FTH表現增加。硒可以抑制此死亡作用,可能機制是透過增加GPX4蛋白表現量;鋅增加SAS與鐵複合組細胞死亡,Zn-MT的增加無助於複合組細胞存活。zh_TW
dc.description.abstractIron plays dual roles in cells. It is essential for cell growth but also produce reactive oxygen species (ROS) via the Fenton reaction then inducing cell toxicity and damage. Iron-dependent cell death, ferroptosis, is a newly discovered non-apoptotic cell death mode in 2003. It is a regulated form of cell death driven by iron-induced lipid peroxide accumulation and regulation strictly by intracellular signaling pathway. The morphological, biochemical markers and genetic characteristics of ferroptosis are different from apoptosis, necrosis and autophagic. The mechanism of ferroptosis is inhibiting synthesis and utilization of reduced-glutathione (GSH) . Then, GSH depletion and lipid peroxide (LROS) accumulation lead to ferroptosis. Blockade of any steps is might prevent ferroptosis. Breast cancer cells have the ability of iron accumulation, which increases breast cancer cells growth. The higher malignancy degrees of breast cancer cells have the stronger ability of iron accumulation. Therefore, the purpose of this study is investigating the effect of ferroptosis on breast cancer cell. The study design is making use of the two characteristics of triple-negative breast cancer cell line MDA-MB-231 : sensitive to sulfasalazine (SAS) and strong ability of iron accumulation, to induce ferroptosis. We detect ferroptosis molecular characteristics, and the effects is blocked by specific inhibitors ferrostatin-1. Then, we analyze iron-related antioxidant proteins NRF2, HO-1 and ferritin (FTH) protein expression and assess the impact of the antioxidant mineral selenium and zinc compound in ferroptosis. The results show that combined group (SAS + iron) induce MDA-MB-231 cells ferroptosis, and ferrostatin-1 inhibit cell death. In addition, ROS and LROS are increased before cell death. The NRF2 and FTH protein expression levels are increased in a combined group dose-dependent manner. Finally, we found selenium can inhibit ferroptosis, and the mechanism may be through increasing the GPX4 protein expression. Zinc increase cell death in combined group and enhance Zn-MT protein expression, but Zn-MT does not contribute to prevent cell death.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:12:09Z (GMT). No. of bitstreams: 1
ntu-105-R99447010-1.pdf: 4568315 bytes, checksum: 477f7b402c6d5ace89c45e899a14ae8a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
Abstract iii
第一章 文獻回顧 1
第1節 鐵 1
1.1 人體鐵的平衡與分佈 1
1.2 組織之間鐵恆定的調節 3
1.3 細胞鐵恆定 3
1.4 調控之分子機制 3
第2節 乳癌 6
第3節 鐵與乳癌 8
3.1 鐵攝入量、血清鐵與乳癌相關性之研究 8
3.2 乳癌患者的鐵代謝變異 9
3.3 乳癌細胞堆積鐵之分子機制 9
第4節 非凋亡性細胞死亡模式:鐵依賴性死亡 (Ferroptosis) 12
4.1 細胞ferroptosis型態特徵 16
4.2 Ferroptosis抑制劑與檢測方法 17
4.3 誘發ferroptosis之機制 18
4.4 促進ferroptosis之因子 21
4.5 Ferroptosis與脂質代謝相關 23
第5節 Ferroptosis疾病動物模式之研究 25
5.1 神經退化性疾病 (Neurodegeneration) 動物模式 25
5.2 缺血性再灌流器官損傷與腎臟疾病模式 26
第6節 NRF2的生理功能 34
6.1 NRF2的結構與功能 34
6.2 NRF2調控之路徑:NRF2-ARE路徑 34
6.3 NRF2活性的調控 35
6.4 NRF2-ARE調控之下游蛋白 37
6.5 NRF2-ARE路徑在腫瘤形成的雙重作用 39
本論文研究目的與實驗設計 41
第二章 材料與方法 43
第1節 實驗細胞株 43
第2節 藥品與試劑 43
2.1 細胞培養 43
2.2 MTT試驗 44
2.3 細胞氧化壓力試驗 44
2.4 蛋白質定量與西方墨點法 44
2.5 enzyme-linked immunosorbent assay (ELISA) assay 45
第3節 試劑配製 46
3.1 細胞培養 46
3.2 細胞存活率分析 (MTT assay) 47
3.3 細胞氧化壓力試驗 47
3.4 蛋白質分析-西方墨點法 47
第4節 儀器 49
4.1 細胞觀察、培養與保存 49
4.2 MTT試驗、蛋白質測定 49
4.3 細胞氧化壓力試驗 49
4.4 西方墨點法 49
4.5 一般實驗儀器 49
第5節 實驗方法 51
5.1 細胞之解凍、培養、繼代與保存步驟 51
5.2 細胞存活率分析 (MTT assay) 51
5.3 細胞氧化壓力試驗 52
5.4 蛋白質定量分析 52
5.5 蛋白質分析-西方墨點法 (Western blot analysis) 53
5.6 ELISA assay 54
第6節 統計分析 54
第三章 實驗結果 56
第1節 水楊酸及鐵致乳癌細胞ferroptosis模式 56
結果 58
1.1 控制組 (C) 與抑制劑組 (ferro-1) 對乳癌細胞生長之影響。 58
1.2 FAC致乳癌細胞ferroptosis效應 58
1.3 SAS致乳癌細胞ferroptosis效應 59
1.4 複合組致乳癌細胞ferroptosis效應 59
討論 60
第2節 水楊酸及鐵致乳癌細胞氧化壓力的效應 65
結果 66
2.1 水楊酸、鐵及複合劑組對乳癌細胞cytosolic ROS表現量之效應 66
2.2 水楊酸、鐵及複合組對乳癌細胞lipid ROS表現量之影響 66
討論 67
第3節 Ferroptosis影響之抗氧化蛋白 71
結果 73
3.1 複合組對NRF2、HO-1、FTH效應 73
3.2 SFN及B對ferroptosis情形下抗氧化蛋白表現量之效應 75
3.3 Western Blot蛋白質序列稀釋補充實驗 80
討論 81
第4節 抗氧化礦物質selenium以及znic對ferroptosis之影響 83
結果與討論 86
4.1 Se對ferroptosis之影響 86
4.2 Zn對ferroptosis之影響 86
第四章 綜合討論 92
第1節 Ferroptosis研究里程碑 92
第2節 Ferroptosis待解的問題 94
2.1 鐵扮演在Ferroptosis扮演的角色 94
2.2 比較Ferroptosis、Oxytosis和Glutamate excitotoxicity 94
第3節 Se、Vitamin E與Cancer 97
第4節 細胞鐵狀態對癌細胞的影響 98
第五章 總結論 99
參考文獻 100
dc.language.isozh-TW
dc.subject鐵依賴性死亡zh_TW
dc.subject鐵zh_TW
dc.subject乳癌zh_TW
dc.subject水楊酸zh_TW
dc.subjectFerroptosisen
dc.subjectIronen
dc.subjectBreast Canceren
dc.subjectSulfasalazineen
dc.title柳氮磺口比口定水楊酸與鐵誘發乳癌細胞MDA-MB-231鐵依賴性死亡初探zh_TW
dc.titleFerroptosis Induction in Breast Cancer Cell Line MDA-MB-231 by Sulfasalazine and Ferric Ammonium Citrateen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何佳安(Ja-an Ho),沈湯龍(Tang-Long Shen),蘇純立(Chun-Li Su),劉奕方(Yih-Fong Liew)
dc.subject.keyword鐵依賴性死亡,鐵,乳癌,水楊酸,zh_TW
dc.subject.keywordFerroptosis,Iron,Breast Cancer,Sulfasalazine,en
dc.relation.page112
dc.identifier.doi10.6342/NTU201603493
dc.rights.note有償授權
dc.date.accepted2016-08-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved