請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48941
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊振義 | |
dc.contributor.author | Cheng-yen Chen | en |
dc.contributor.author | 陳正諺 | zh_TW |
dc.date.accessioned | 2021-06-15T11:11:59Z | - |
dc.date.available | 2016-08-25 | |
dc.date.copyright | 2016-08-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-22 | |
dc.identifier.citation | 褚侯森 (2008) 複雜地形中的通量量測—以棲蘭山台灣扁柏森林樣區為例,國立東華大學自然資源管理研究所碩士論文。
洪敏勝 (2010) 山坡地區森林次冠層通量特徵之研究,國立臺灣大學地理環境資源研究所碩士論文。 Anderson, R.G., Wang D. (2014) Energy budget closure observed in paired Eddy Covariance towers with increased and continuous daily turbulence. Agricultural and Forest Meteorology, 184:204-209 Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrie, J., Foken, T., Kowalski, A.S., H., M., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwarld, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., Vesala, T. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30: 113–175. Baldocchi, D.D., Vogel, C.A., Hall, B. (1997) Seasonal Variation of Carbon Dioxide Exchange Rates Above and Below a Boreal Jack Pine Forest. Agriculturaland ForestMeteorology, 83: 147-170. Barr, A.G., Morgenstern, K., Black, T.A., McCaughey, J.H., Nesic, Z. (2006) Surface energy balance closure by the eddy covariance method above three boreal forest stands and implications for the measurement ofCO2 flux. Agricultural and Forest Meteorology, 140: 322–337. Berbigier, P., Bonnefond, J.M., Mellmann, P. (2001) CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology, 108: 183-197. Brutsaert, W. (1998) Lnad-surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scales. Water Resource Research, 34(10): 2433-2442. Cava, D., Contini, D., Donateo, A., Martano, P., (2008) Analysis of short-term closure of the surface energy balance above short vegetation. Agricultural and forest meteorology, 148: 82-93 Chang, S.C., Tseng, K.H., Hsia, Y.J., Wang, C.P., Wu, J.T. (2008) Soil respiration in a subtropical montane cloud forest in Taiwan. Agricultural and forest meteorology, 148: 788-798. Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E., Tirone, G., Matteucci, G., Seufert, G. (2005)Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agricultural and Forest Meteorology, 135: 22-34 Degefie, D.T., El-Madany, T.S., Hejkal, J., Held,M., Dupontb, J.C., Haeffelin, M., Klemm, O. (2015) Microphysics and energy and water fluxes of various fog types at SIRTA, France. Atmospheric Research, 151: 162–175. Dohrenbusch, A. and Hager, A. (2006) Forests in the Clouds. German Reaserch, 28(1): 4-9. Dolman, A.J., Moors, E.J., Elbers, J.A. (2002) The carbon uptake of a mid latitude pine forest growing on sandy soil. Agricultural and Forest Meteorology, 111: 157-170. Dore, S., Kolb, T.E., Montes-Helu, M., Sullivan, B.W., Winslow, W.D., Hart, S.C., Kayez, J.P., Kochw, G.W., Hungatew, B.A. (2008) Long-Term Impact of a Stand-Replacing Fire on Ecosystem CO2 Exchange of a Ponderosa Pine Forest. Global Change Biology, 14: 1801-1820. Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C.T., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S. (2001) Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 107(1): 71–77. Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A. (2003) A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Boundary-Layer Meteorology, 107(1): 1-48. Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B. and Munger, W. (2004) Post-field data quality control. Pages 181-208 in : X. Lee, W. Massman and B. Law (eds.). Handbook of micrometeorology: A guide for surface flux measurement and analysis. Kluwer Acdamic, New York. Foken, T. (2008) The energy balance closure problem: an overview. Ecological Applications, 18(6): 1351–1367. Giasson, M.A., Coursolle, C., Margolis, H.A. (2006) Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after scarification. Agricultural and Forest Meteorology, 140: 23-40. Goldstein, A.H., Hultman, N.E., Fracheboud, J.M., Bauer, M.R., Panek, J.A., Xu, M., Qi, Y., Guenther, A.B., Baugh, W. (2000) Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology, 101: 113-129 Hendricks Franssen, H.J., Stöckli, R., Lehner, I., Rotenberg, E., Senevirante, S.I. (2010) Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. Agricultural and Forest Meteorology, 150(12): 1553–1567. Heusinkveld, G., Jacobs, A.F.G., Holtslag, A.A.M., Berkowicz, S.M. (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agricultural and Forest Meteorology, 122: 21-37 Hsieh, C.I., Katul, G.G., Schieldge, J., Sigmon, J., Knoeer, K.R. (1996) Estimation of momentum and heat fluxes using dissipation and flux-variance methods in the unstable surface layer , Water Resources Research, 32: 2453-2462. Humphreys, E.R., Black, T.A., Morgenstern, K., Cai, T., Drewitt, G.B., Nesic, Z., Trofymow, J.A. (2006) Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140: 6-22 Juang, J.Y., Katul, G.G., Siqueira, M.B.S., Stoy, P.C., Palmroth, S., McCarthy, H.R., Kim, H.S., Oren, R. (2006) Modeling nighttime ecosystem respiration from measured CO2 concentration and air temperature profiles using inverse methods. Journal of Geophysical Research, 111 Klemm, O, Chang, S.C., Hsia, Y.J. (2006) Energy fluxes at a subtropical mountain cloud forest. Forest Ecology and Management, 224: 5–10. Lai, I.L., Chang, S.C., Lin, P.H., Chou, C.H., Wu, J.T. (2006) Climatic Characteristics of the Subtropical Mountainous Cloud Forest at the Yuanyang Lake Long-Term Ecological Research Site, Taiwan. Taiwania, 51(4): 317-329 Li, Z.Q., Yu, G.R., Wen, X.F., Zhang, L.M., Ren, C.Y., Fu, Y.L. (2005) Energy balance closure at ChinaFLUX sites. Science in China Series D-Earth Sciences, 48: 51–62. Mildenberger , K., Beiderwieden , E., Hsia, Y.J., Klemm., O. (2009) CO2 and water vapor fluxes above a subtropical mountain cloud forest—The effect of light conditions and fog. Agricultural and Forest Meteorology, 149: 1730–1736. Miyazaki, S., Ishikawa, M., Baatarbileg, N., Damdinsuren, S., Ariuntuya, N., Jambaljav, Y. (2014) Interannual and seasonal variations in energy and carbon exchanges over the larch forests on the permafrost in northeastern Mongolia. Polar Science, 8: 166–182. Morgenstern, K., Black, T.A., Humphreys, E.R., Griffis, T.J., Drewitt, G.B., Cai, T., Nesic, Z., Spittlehouse, D.L., Livingston, N.J. (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agricultural and Forest Meteorology, 123: 201-219. Oke, T. R. (1987) Boundary layer climates , New York: Routledge. Oliphant, A.J., Grimmond, C.S.B., Zutter, H.N., Schmid, H.P., Su, H.-B., Scott, S.L., Offerle, B., Randolph, J.C., Ehman, J. (2004) Heat storage and energy balance fluxes for a temperate deciduous forest. Agricultural and Forest Meteorology, 126: 185–201. Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., Yakir, D. (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3: 571–583. Reynolds, O. (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 451(1941): 5-47. Still, C. J., Foster, P. N., Schneider, S. H. (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature, 398: 608–610. Stoy, P.C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M.A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., Mccaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., Varlagin, A. (2013) A data-driven analysis of energy balance closure across FLUXNETresearch sites: The role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 171–172: 137–152. Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology. Dordrecht : Kluwer Academic Publishers Taylor, G. I. (1938) The spectrum of turbulence. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 164(A919): 0476-0490. Vogelmann, H. W. (1973) Fog Precipitation in the Cloud Forests of Eastern Mexico, BioScience, 23(2): 96-100. Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113: 223–243. Wilson, K. B. and Baldocchi, D. D. (2000) Seasonal and Interannual Variability of Energy Fluxes over a Broadleaved Temperate Deciduous Forest in North America. Agricultural and Forest Meteorology, 100: 1–18. Ye, X., Wu, B., Zhang, H. (2015) The turbulent structure and transport in fog layers observed over the Tianjin area. Atmospheric Research, 153: 217–234. Zhang, M., Yu, G.R., Zhuang, J., Gentry, R., Fu, Y.L., Sun, X.M., Zhang, L.M., Wen, X.F., Wang, Q.F., Han, S.J., Yan, J.H., Zhang, Y.P., Wang, Y.F., Li, Y.N. (2011) Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agricultural and Forest Meteorology, 151: 803–816. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48941 | - |
dc.description.abstract | 雲霧作為一種天氣現象,其對於通量的量測造成很大的影響。除了降低入射到森林的輻射通量,也會使能量通量與二氧化碳通量受到低估。過去的研究會計算所有資料的平均能量平衡閉合度,並藉此校正二氧化碳通量,但能量平衡閉合度並非全年不變,其會受到環境因子的變化而有所改變。因此本研究透過臺灣棲蘭山雲霧森林長時間的觀測資料瞭解雲霧森林在不同年份以及不同季節的能量通量與能量平衡閉合度會受到哪些因子影響。
棲蘭山雲霧森林的平均能量平衡閉合度(0.86)與過去的研究相仿。但其能量平衡閉合度會受到雲霧的影響。當能見度越低,能量平衡閉合度也越低。此外,當風速低於2.0 m s-1 時,其與能量平衡閉合度呈正相關,但風速高於2.0m s-1,能量平衡閉合度便開始下降,這與過去的研究發現並不相同。除此之外,能量平衡閉合度在上午七點到十點大多大於1,主要與風向轉變帶來不同性質的空氣團塊有關。透過主成份分析發現,能見度為主要影響棲蘭山雲霧森林能量平衡閉合度的環境因子。 | zh_TW |
dc.description.abstract | Cloud forest is usually covered by dense fog influencing measurement of flux severely. Energy balance closure (EBC) is a parameter to correct measurement of flux but it will change by environment. This study find out the relationship between environmental factors and energy balance closure in Chi-Lan Mountain cloud forest. The Chi-Lan Mountain cloud forest in northeastern Taiwan is a typical subtropical cloud forest. At this site, the average EBC is 0.86, similar as other needle forest site. EBC is strongly influenced by dense fog. While the visibility is under 100 m, the EBC is only 0.48. EBC increase when visibility increase. Wind speed is also an environment factor effecting EBC. EBC will increase when wind speed increase to 2.0 m s-1, but decrease when wind speed over 2.0 m s-1. The EBC is more than 1 in morning due to the different characteristics of air masses causing by winds. In short, the inter-annual and seasonal variations in energy balance closure over Chi-Lan Mountain forest is dominate by dense fog. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:11:59Z (GMT). No. of bitstreams: 1 ntu-105-R02228014-1.pdf: 3125662 bytes, checksum: 7ac1158c06c62955fbae682c306aaf8d (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 圖目錄 3 表目錄 5 第一章、 緒論 6 第一節、 研究動機 6 第二節、 研究目的 9 第二章、 文獻回顧 10 第一節、 能量平衡閉合度在不同植被種類中的差異 10 第二節、 氣象條件對通量量測的影響 10 第三節、 不同的分析時間尺度 11 第四節、 其他因素 12 第三章、 材料與方法 15 第一節、 研究樣區介紹 15 第二節、 儀器設置 17 第三節、 資料品質控制與篩選 18 第四節、 能量平衡閉合度與能量分配 21 第四章、 結果與討論 23 第一節、 年際環境變化與能量通量變化 23 第二節、 能量通量與環境的季節及日變化 33 1. 淨輻射通量 33 2. 可感熱通量 34 3. 潛熱通量 35 4. 鮑溫比 36 5. 能量平衡閉合度 37 6. 能見度 38 7. 平均風向 39 8. 風速 40 9. 水蒸氣壓差 41 10. 起霧時間 42 第三節、 能量通量在上午的變化 44 1. 能量平衡閉合度 44 2. 淨輻射通量 45 3. 可感熱通量 46 4. 潛熱通量 47 5. 鮑溫比 48 6. 盛行風 49 第四節、 環境因子與能量平衡閉合度 53 1. 能見度與能量平衡閉合度的關係 53 2. 風向與能量平衡閉合度的關係 55 3. 風速與能量平衡閉合度的關係 56 第五章、 結論與建議 58 引用文獻 61 | |
dc.language.iso | zh-TW | |
dc.title | 棲蘭霧林生態系統能量平衡年際與季節變化之研究 | zh_TW |
dc.title | Investigating Interannual and Seasonal Variations of Energy Balance in a Mountain Cloud Forest in Chi-Lan Mountain | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 久米朋宣,黃倬英 | |
dc.subject.keyword | 能量通量,可感熱通量,潛熱通量,能量平衡閉合,雲霧, | zh_TW |
dc.subject.keyword | energy flux,sensible heat flux,latent heat flux,energy balance closure,fog, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201603252 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。