Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅?升(Wan-Sheng Lo)
dc.contributor.authorWei-Han Linen
dc.contributor.author林暐瀚zh_TW
dc.date.accessioned2021-06-15T11:11:46Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-22
dc.identifier.citationAllen, C., S. Buttner, A. D. Aragon, J. A. Thomas, O. Meirelles, J. E. Jaetao, D. Benn, S. W. Ruby, M. Veenhuis, F. Madeo and M. Werner-Washburne (2006). 'Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures.' J Cell Biol 174(1): 89-100.
Aragon, A. D., A. L. Rodriguez, O. Meirelles, S. Roy, G. S. Davidson, P. H. Tapia, C. Allen, R. Joe, D. Benn and M. Werner-Washburne (2008). 'Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures.' Mol Biol Cell 19(3): 1271-1280.
Badis, G., E. T. Chan, H. van Bakel, L. Pena-Castillo, D. Tillo, K. Tsui, C. D. Carlson, A. J. Gossett, M. J. Hasinoff, C. L. Warren, M. Gebbia, S. Talukder, A. Yang, S. Mnaimneh, D. Terterov, D. Coburn, A. Li Yeo, Z. X. Yeo, N. D. Clarke, J. D. Lieb, A. Z. Ansari, C. Nislow and T. R. Hughes (2008). 'A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters.' Mol Cell 32(6): 878-887.
Balaban, R. S., S. Nemoto and T. Finkel (2005). 'Mitochondria, oxidants, and aging.' Cell 120(4): 483-495.
Bernard, A., M. Jin, P. Gonzalez-Rodriguez, J. Fullgrabe, E. Delorme-Axford, S. K. Backues, B. Joseph and D. J. Klionsky (2015). 'Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy.' Curr Biol 25(5): 546-555.
Bontron, S., M. Jaquenoud, S. Vaga, N. Talarek, B. Bodenmiller, R. Aebersold and C. De Virgilio (2013). 'Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A.' Cell Rep 3(1): 16-22.
Boy-Marcotte, E., M. Perrot, F. Bussereau, H. Boucherie and M. Jacquet (1998). 'Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae.' J Bacteriol 180(5): 1044-1052.
Burtner, C. R., C. J. Murakami, B. K. Kennedy and M. Kaeberlein (2009). 'A molecular mechanism of chronological aging in yeast.' Cell Cycle 8(8): 1256-1270.
Cameroni, E., N. Hulo, J. Roosen, J. Winderickx and C. De Virgilio (2004). 'The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms.' Cell Cycle 3(4): 462-468.
Chang, Y., J. Wu, X. J. Tong, J. Q. Zhou and J. Ding (2011). 'Crystal structure of the catalytic core of Saccharomyces cerevesiae histone demethylase Rph1: insights into the substrate specificity and catalytic mechanism.' Biochem J 433(2): 295-302.
Davidson, G. S., R. M. Joe, S. Roy, O. Meirelles, C. P. Allen, M. R. Wilson, P. H. Tapia, E. E. Manzanilla, A. E. Dodson, S. Chakraborty, M. Carter, S. Young, B. Edwards, L. Sklar and M. Werner-Washburne (2011). 'The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures.' Mol Biol Cell 22(7): 988-998.
De Virgilio, C. (2012). 'The essence of yeast quiescence.' FEMS Microbiol Rev 36(2): 306-339.
Denoth Lippuner, A., T. Julou and Y. Barral (2014). 'Budding yeast as a model organism to study the effects of age.' FEMS Microbiol Rev 38(2): 300-325.
Dillin, A., D. E. Gottschling and T. Nystrom (2014). 'The good and the bad of being connected: the integrons of aging.' Curr Opin Cell Biol 26: 107-112.
Eisenberg, T., S. Schroeder, A. Andryushkova, T. Pendl, V. Kuttner, A. Bhukel, G. Marino, F. Pietrocola, A. Harger, A. Zimmermann, T. Moustafa, A. Sprenger, E. Jany, S. Buttner, D. Carmona-Gutierrez, C. Ruckenstuhl, J. Ring, W. Reichelt, K. Schimmel, T. Leeb, C. Moser, S. Schatz, L. P. Kamolz, C. Magnes, F. Sinner, S. Sedej, K. U. Frohlich, G. Juhasz, T. R. Pieber, J. Dengjel, S. J. Sigrist, G. Kroemer and F. Madeo (2014). 'Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan.' Cell Metab 19(3): 431-444.
Fabrizio, P. and V. D. Longo (2003). 'The chronological life span of Saccharomyces cerevisiae.' Aging Cell 2(2): 73-81.
Fabrizio, P., S. D. Pletcher, N. Minois, J. W. Vaupel and V. D. Longo (2004). 'Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.' FEBS Lett 557(1-3): 136-142.
Fabrizio, P., F. Pozza, S. D. Pletcher, C. M. Gendron and V. D. Longo (2001). 'Regulation of longevity and stress resistance by Sch9 in yeast.' Science 292(5515): 288-290.
Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein and P. O. Brown (2000). 'Genomic expression programs in the response of yeast cells to environmental changes.' Mol Biol Cell 11(12): 4241-4257.
Gasch, A. P. and M. Werner-Washburne (2002). 'The genomics of yeast responses to environmental stress and starvation.' Funct Integr Genomics 2(4-5): 181-192.
Geng, F., S. Wenzel and W. P. Tansey (2012). 'Ubiquitin and proteasomes in transcription.' Annu Rev Biochem 81: 177-201.
Gray, J. V., G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer and M. Werner-Washburne (2004). ''Sleeping beauty': quiescence in Saccharomyces cerevisiae.' Microbiol Mol Biol Rev 68(2): 187-206.
Hasegawa, Y., K. Irie and A. P. Gerber (2008). 'Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast.' RNA 14(11): 2333-2347.
Holt, L. J., B. B. Tuch, J. Villen, A. D. Johnson, S. P. Gygi and D. O. Morgan (2009). 'Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.' Science 325(5948): 1682-1686.
Huang, J. and D. J. Klionsky (2007). 'Autophagy and human disease.' Cell Cycle 6(15): 1837-1849.
Huber, A., B. Bodenmiller, A. Uotila, M. Stahl, S. Wanka, B. Gerrits, R. Aebersold and R. Loewith (2009). 'Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.' Genes Dev 23(16): 1929-1943.
Jang, Y. K., L. Wang and G. B. Sancar (1999). 'RPH1 and GIS1 are damage-responsive repressors of PHR1.' Mol Cell Biol 19(11): 7630-7638.
Kaeberlein, M., C. R. Burtner and B. K. Kennedy (2007). 'Recent developments in yeast aging.' PLoS Genet 3(5): e84.
Klose, R. J., K. E. Gardner, G. Liang, H. Erdjument-Bromage, P. Tempst and Y. Zhang (2007). 'Demethylation of histone H3K36 and H3K9 by Rph1: a vestige of an H3K9 methylation system in Saccharomyces cerevisiae?' Mol Cell Biol 27(11): 3951-3961.
Levine, B. and J. Yuan (2005). 'Autophagy in cell death: an innocent convict?' J Clin Invest 115(10): 2679-2688.
Li, B., M. Carey and J. L. Workman (2007). 'The role of chromatin during transcription.' Cell 128(4): 707-719.
Li, L., S. Miles, Z. Melville, A. Prasad, G. Bradley and L. L. Breeden (2013). 'Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators.' Mol Biol Cell 24(23): 3697-3709.
Liang, C. Y., P. H. Hsu, D. F. Chou, C. Y. Pan, L. C. Wang, W. C. Huang, M. D. Tsai and W. S. Lo (2011). 'The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1.' Nucleic Acids Res 39(10): 4151-4165.
Liang, C. Y., L. C. Wang and W. S. Lo (2013). 'Dissociation of the H3K36 demethylase Rph1 from chromatin mediates derepression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae.' Mol Biol Cell 24(20): 3251-3262.
Longo, V. D., L. L. Liou, J. S. Valentine and E. B. Gralla (1999). 'Mitochondrial superoxide decreases yeast survival in stationary phase.' Arch Biochem Biophys 365(1): 131-142.
Longo, V. D., G. S. Shadel, M. Kaeberlein and B. Kennedy (2012). 'Replicative and chronological aging in Saccharomyces cerevisiae.' Cell Metab 16(1): 18-31.
Lynch-Day, M. A. and D. J. Klionsky (2010). 'The Cvt pathway as a model for selective autophagy.' FEBS Lett 584(7): 1359-1366.
Mersman, D. P., H. N. Du, I. M. Fingerman, P. F. South and S. D. Briggs (2009). 'Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression.' Genes Dev 23(8): 951-962.
Mizushima, N., B. Levine, A. M. Cuervo and D. J. Klionsky (2008). 'Autophagy fights disease through cellular self-digestion.' Nature 451(7182): 1069-1075.
Mortimer, R. K. and J. R. Johnston (1959). 'Life span of individual yeast cells.' Nature 183(4677): 1751-1752.
Moskvina, E., C. Schuller, C. T. Maurer, W. H. Mager and H. Ruis (1998). 'A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements.' Yeast 14(11): 1041-1050.
Muller, I., M. Zimmermann, D. Becker and M. Flomer (1980). 'Calendar life span versus budding life span of Saccharomyces cerevisiae.' Mech Ageing Dev 12(1): 47-52.
Murakami, C., J. R. Delaney, A. Chou, D. Carr, J. Schleit, G. L. Sutphin, E. H. An, A. S. Castanza, M. Fletcher, S. Goswami, S. Higgins, M. Holmberg, J. Hui, M. Jelic, K. S. Jeong, J. R. Kim, S. Klum, E. Liao, M. S. Lin, W. Lo, H. Miller, R. Moller, Z. J. Peng, T. Pollard, P. Pradeep, D. Pruett, D. Rai, V. Ros, A. Schuster, M. Singh, B. L. Spector, H. Vander Wende, A. M. Wang, B. M. Wasko, B. Olsen and M. Kaeberlein (2012). 'pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast.' Cell Cycle 11(16): 3087-3096.
Niccoli, T. and L. Partridge (2012). 'Ageing as a risk factor for disease.' Curr Biol 22(17): R741-752.
Nicoletti, I., G. Migliorati, M. C. Pagliacci, F. Grignani and C. Riccardi (1991). 'A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry.' J Immunol Methods 139(2): 271-279.
Nordberg, N., I. Olsson, M. Carlsson, G. Z. Hu, J. Orzechowski Westholm and H. Ronne (2014). 'The histone demethylase activity of Rph1 is not essential for its role in the transcriptional response to nutrient signaling.' PLoS One 9(7): e95078.
Orzechowski Westholm, J., S. Tronnersjo, N. Nordberg, I. Olsson, J. Komorowski and H. Ronne (2012). 'Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells.' PLoS One 7(2): e31577.
Pan, Y., E. A. Schroeder, A. Ocampo, A. Barrientos and G. S. Shadel (2011). 'Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling.' Cell Metab 13(6): 668-678.
Paquin, N., M. Menade, G. Poirier, D. Donato, E. Drouet and P. Chartrand (2007). 'Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p.' Mol Cell 26(6): 795-809.
Pedruzzi, I., N. Burckert, P. Egger and C. De Virgilio (2000). 'Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1.' EMBO J 19(11): 2569-2579.
Pedruzzi, I., F. Dubouloz, E. Cameroni, V. Wanke, J. Roosen, J. Winderickx and C. De Virgilio (2003). 'TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0.' Mol Cell 12(6): 1607-1613.
Piper, P. W. (2006). 'Long-lived yeast as a model for ageing research.' Yeast 23(3): 215-226.
Quan, Z., L. Cao, Y. Tang, Y. Yan, S. G. Oliver and N. Zhang (2015). 'The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan.' PLoS Genet 11(6): e1005282.
Quan, Z., S. G. Oliver and N. Zhang (2011). 'JmjN interacts with JmjC to ensure selective proteolysis of Gis1 by the proteasome.' Microbiology 157(Pt 9): 2694-2701.
Radonjic, M., J. C. Andrau, P. Lijnzaad, P. Kemmeren, T. T. Kockelkorn, D. van Leenen, N. L. van Berkum and F. C. Holstege (2005). 'Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit.' Mol Cell 18(2): 171-183.
Reinders, A., N. Burckert, T. Boller, A. Wiemken and C. De Virgilio (1998). 'Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase.' Genes Dev 12(18): 2943-2955.
Schroeder, E. A., N. Raimundo and G. S. Shadel (2013). 'Epigenetic silencing mediates mitochondria stress-induced longevity.' Cell Metab 17(6): 954-964.
Shi, Y. J., C. Matson, F. Lan, S. Iwase, T. Baba and Y. Shi (2005). 'Regulation of LSD1 histone demethylase activity by its associated factors.' Mol Cell 19(6): 857-864.
Smets, B., R. Ghillebert, P. De Snijder, M. Binda, E. Swinnen, C. De Virgilio and J. Winderickx (2010). 'Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae.' Curr Genet 56(1): 1-32.
Steinkraus, K. A., M. Kaeberlein and B. K. Kennedy (2008). 'Replicative aging in yeast: the means to the end.' Annu Rev Cell Dev Biol 24: 29-54.
Strahl, B. D., P. A. Grant, S. D. Briggs, Z. W. Sun, J. R. Bone, J. A. Caldwell, S. Mollah, R. G. Cook, J. Shabanowitz, D. F. Hunt and C. D. Allis (2002). 'Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression.' Mol Cell Biol 22(5): 1298-1306.
Swinnen, E., V. Wanke, J. Roosen, B. Smets, F. Dubouloz, I. Pedruzzi, E. Cameroni, C. De Virgilio and J. Winderickx (2006). 'Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae.' Cell Div 1: 3.
Tan, M. K., H. J. Lim and J. W. Harper (2011). 'SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation.' Mol Cell Biol 31(18): 3687-3699.
Treger, J. M., A. P. Schmitt, J. R. Simon and K. McEntee (1998). 'Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae.' J Biol Chem 273(41): 26875-26879.
Tsukada, M. and Y. Ohsumi (1993). 'Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.' FEBS Lett 333(1-2): 169-174.
Tsukada, Y., J. Fang, H. Erdjument-Bromage, M. E. Warren, C. H. Borchers, P. Tempst and Y. Zhang (2006). 'Histone demethylation by a family of JmjC domain-containing proteins.' Nature 439(7078): 811-816.
Tu, S., E. M. Bulloch, L. Yang, C. Ren, W. C. Huang, P. H. Hsu, C. H. Chen, C. L. Liao, H. M. Yu, W. S. Lo, M. A. Freitas and M. D. Tsai (2007). 'Identification of histone demethylases in Saccharomyces cerevisiae.' J Biol Chem 282(19): 14262-14271.
Van Rechem, C., J. C. Black, T. Abbas, A. Allen, C. A. Rinehart, G. C. Yuan, A. Dutta and J. R. Whetstine (2011). 'The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein.' J Biol Chem 286(35): 30462-30470.
Wei, M., P. Fabrizio, J. Hu, H. Ge, C. Cheng, L. Li and V. D. Longo (2008). 'Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9.' PLoS Genet 4(1): e13.
Wei, M., P. Fabrizio, F. Madia, J. Hu, H. Ge, L. M. Li and V. D. Longo (2009). 'Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension.' PLoS Genet 5(5): e1000467.
Werner-Washburne, M., E. Braun, G. C. Johnston and R. A. Singer (1993). 'Stationary phase in the yeast Saccharomyces cerevisiae.' Microbiol Rev 57(2): 383-401.
Werner-Washburne, M., E. L. Braun, M. E. Crawford and V. M. Peck (1996). 'Stationary phase in Saccharomyces cerevisiae.' Mol Microbiol 19(6): 1159-1166.
Workman, J. L. (2006). 'Nucleosome displacement in transcription.' Genes Dev 20(15): 2009-2017.
Xiao, T., H. Hall, K. O. Kizer, Y. Shibata, M. C. Hall, C. H. Borchers and B. D. Strahl (2003). 'Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast.' Genes Dev 17(5): 654-663.
Zhu, C., K. J. Byers, R. P. McCord, Z. Shi, M. F. Berger, D. E. Newburger, K. Saulrieta, Z. Smith, M. V. Shah, M. Radhakrishnan, A. A. Philippakis, Y. Hu, F. De Masi, M. Pacek, A. Rolfs, T. Murthy, J. Labaer and M. L. Bulyk (2009). 'High-resolution DNA-binding specificity analysis of yeast transcription factors.' Genome Res 19(4): 556-566.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48930-
dc.description.abstract對生物體來說,老化是一個必然會發生的生理過程,而老化被認為是造成疾病與死亡的風險因子之一。老化發生的機制仍有許多未解之謎,而在過往的十年中,其相關的研究已經發展至分子生物的層次,因此,以單一細胞做為一個獨立個體的出芽酵母提供了一個極好的模型來研究高等真核生物的老化機制。在本篇論文中,我利用酵母菌的世代壽命 (chronological lifespan, CLS) 模型來進行老化的研究。由於染色體的動態變化被認為是老化過程中重要的調控方式之一,因此本篇論文之研究方向主要是想探討酵母菌的H3K36去甲基酶Rph1在老化過程中扮演的角色。
在第一部分中,我使用內源性表達Rph1之細胞作為研究材料。首先,本研究發現Rph1對於老化的酵母菌之熱耐受性是十分重要的,而且其功能性區域zing-finger與JmjN對於熱耐受性皆是不可或缺的,但失去Rph1去甲基酶活性的細胞則不會對於其熱耐受性有明顯的影響。此外,Rph1可能會參與細胞週期的調控,並對於細胞進入與離開靜止期(stationary phase)有其重要的功能。再者,本研究亦發現酵母菌會藉由調控Rph1磷酸化與去磷酸化等轉譯後修飾的方式來控制其在不同時期之功能,而此調控機制可能是受到Rim15相關的訊號傳遞路徑來調控的。除了轉譯後修飾之外,本研究也發現在老化過程中,細胞會藉由調控Rph1信使RNA的轉錄與Rph1蛋白質的量來控制Rph1的功能。而在第二部分中,本研究發現過度表達Rph1會造成細胞延長其生長遲滯期(lag phase),而異位表達Rph1則會提高細胞在老化時期的熱耐受性。綜合上述結果,本研究指出H3K36去甲基酶Rph1參與在酵母菌細胞進入老化的進程以及老化細胞回到適當環境後重新啟動生長等重要的過程。
zh_TW
dc.description.abstractAging is an inevitable biological process leading to death and remains as a long-standing mystery in biology. In the last decade, research of aging has been advanced extensively into the molecular level. The single-celled Saccharomyces cerevisiae (budding yeast) is an excellent model organism to study the molecular and cellular events of chronological lifespan (CLS) in eukaryotes. Chromatin dynamics has been appreciated as one of the master modulators in aging process. Therefore, my thesis research focuses on the mechanistic roles of H3K36 demethylase Rph1 in regulation of the CLS in S. cerevisiae.
First, I investigated the functional roles of Rph1 expressed by its own promoter in response to stress condition during chronological aging. I showed that Rph1 is required for thermotolerance in aging yeast. The functional domains of Rph1, zing finger (ZF) and JmjN, but not the catalytic domain for demethylase activity, contribute to the thermotolerance activity in aging cells. In addition, Rph1 is likely involved in cell cycle progression, quiescence entry and exit. Furthermore, Rph1 is hyper-phosphorylation upon diauxic-shift and hypo-phosphorylation upon re-feeding and such reversible protein phosphorylation of Rph1 is Rim15-dependent during CLS. In the second part of my work, I found that constitutively expressed and overexpressed Rph1 prolong the lag phase of earlier cell growth. Furthermore, the higher expressed Rph1 enhanced the thermotolerance of aging yeast in stationary phase, suggesting that the expression of Rph1 is highly regulated and consequently to control cell growth in chronological aging. Taken together, my work reveals the functional roles of Rph1 in regulation of yeast CLS and further demonstrates the post-translational modifications contribute to modulate Rph1 on aging and/or rejuvenation process.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:11:46Z (GMT). No. of bitstreams: 1
ntu-105-R03442023-1.pdf: 56921923 bytes, checksum: 91d51c4ee1b08093ae3b64b4e6db0f95 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Aging is a risk factor for disease 1
1.2 Two major models for aging study in Saccharomyces cerevisiae 1
1.3 The chronological life span (CLS) in yeast 3
1.4 Two major molecular pathways modulating CLS in yeast 4
1.5 Rph1 and Gis1 are two paralogous JmjC-domain containing proteins 5
1.6 Rph1 regulates the transcription of environment stress response (ESR) genes 7
1.7 Rph1 is probable to regulate chronological aging 8
Chapter 2 Materials and Methods 12
2.1 Yeast strains and growth media 12
2.2 Plasmid construction and preparation 12
2.3 Thermotolerance assay 13
2.4 Reverse transcription 13
2.5 Real-time quantitative PCR (qPCR) 13
2.6 Protein extracts preparation by Trichloro acetic acid (TCA) precipitation 14
2.7 Western blot 14
2.8 Colony formation unit (CFU) analysis 15
2.9 Survival rate and PI staining 15
2.10 Flow cytometry 16
2.11 NQ and Q cells separation 16
Chapter 3 Results 18
3.1 Functional and mechanistic studies of H3K36 demethylase Rph1 during chronological aging in Saccharomyces cerevisiae 18
3.1.1 Rph1 is required for thermotolerance in aging yeast 18
3.1.2 The JmjN and zing-finger domains, but not the histone demethylase activity of Rph1, are necessary for the thermotolerance during aging 19
3.1.3 The rph1 mutants display different cell viability maintenance during CLS 20
3.1.4 Rph1 is involved in the cell cycle regulation 22
3.1.5 The rph1∆ delays the quiescence entry in CLS 23
3.1.6 The stationary phase yeast culture can be separated into two distinct cell populations 24
3.1.7 Loss of Rph1 delays cell cycle re-entry at quiescent stage 26
3.1.8 Rph1 plays different roles in transcriptional regulation of ESR and autophagy genes during CLS 26
3.1.9 After diauxic-shift, the RPH1 transcription level was induced but the protein level of Rph1 reduced dramatically 27
3.1.10 Rph1 is regulated by phosphorylation and dephosphorylation during CLS and after re-feeding 28
3.1.11 The phosphorylation of Rph1 is regulated by Rim15 during CLS 29
3.1.12 The phosphorylation of Rph1 is important during CLS 30
3.2 The effects of different expression levels of H3K36 demethylase Rph1 during chronological aging in Saccharomyces cerevisiae 32
3.2.1 Constitutively expressed and over-expressed Rph1 prolong the lag phase 32
3.2.2 Constitutively expressed Rph1 enhanced the thermotolerance during aging 33
3.2.3 The transcription level and protein level were controlled during CLS 33
Chapter 4 Discussion 35
4.1.1 The transcription regulation of acetate, acetyl-CoA and glycerol metabolisms by Rph1 during post-diauxic shift may contribute to the cell viability maintenance 35
4.1.2 The histone demethylase activity of Rph1 and the longevity 37
4.1.3 Rph1 is involved in the cell cycle regulation, quiescence entry and cell cycle re-entry 38
4.1.4 The Rph1 protein level reduced during CLS 39
Chapter 5 Figures and legends 41
Chapter 6 Tables 58
References 60
dc.language.isoen
dc.subjectRph1zh_TW
dc.subject組蛋白去甲基?zh_TW
dc.subject世代壽命zh_TW
dc.subject老化zh_TW
dc.subjectRph1en
dc.subjectH3K36 demethylaseen
dc.subjectchronological life spanen
dc.subjectagingen
dc.title探討酵母菌去甲基酶Rph1在世代壽命中之功能與調控機制zh_TW
dc.titleFunctional and mechanistic studies of the H3K36 demethylase Rph1 during the chronological life span in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林敬哲,鄧述諄,王隆祺
dc.subject.keyword世代壽命,組蛋白去甲基?,Rph1,老化,zh_TW
dc.subject.keywordchronological life span,H3K36 demethylase,Rph1,aging,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201603541
dc.rights.note有償授權
dc.date.accepted2016-08-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
55.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved