Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48916
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞
dc.contributor.authorWei-Chen Chienen
dc.contributor.author錢偉臣zh_TW
dc.date.accessioned2021-06-15T11:11:28Z-
dc.date.available2016-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-22
dc.identifier.citation[1] Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu, and M. F. Lin. Electronic structure of a two-dimensional graphene monolayer in a spatially modulated magnetic field: Peierls tight-binding model. Physical Review B, 77(4), Jan. 2008.
[2] S. Datta. Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge, 2005.
[3] R. Golizadeh-Mojarad, A. N. M. Zainuddin, G. Klimeck, and S. Datta. Atomistic non-equilibrium Green’sfunction simulations of Graphene nano-ribbons in the quantum hall regime. Journal of Computational Electronics, 7(3):407-410, Sept. 2008.
[4] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal. Kwant: a software package for quantum transport. New Journal of Physics, 16(6):063065, June 2014.
[5] Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska. Generalized tight-binding transport model for graphene nanoribbon-based systems. Physical Review B, 81(24), June 2010.
[6] M. Hjort and S. Stafström. Modeling vacancies in graphite via the Hückel method. Physical Review B, 61(20):14089–14094, May 2000.
[7] F. Lafont, R. Ribeiro-Palau, D. Kazazis, A. Michon, O. Couturaud, C. Consejo, T. Chassagne, M. Zielinski, M. Portail, B. Jouault, F. Schopfer, and W. Poirier. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide. Nature ommunications, 6:6806, Apr. 2015.
[8] A. Luican-Mayer and E. Y. Andrei. Probing Dirac Fermions in Graphene by Scanning Tunneling Microscopy and Spectroscopy. In H. Aoki and M. S. Dresselhaus, editors, Physics of Graphene, pages 29–63. Springer International Publishing, Cham, 2014.
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Diracfermions in graphene. Nature, 438(7065):197–200, Nov. 2005.
[10] Z. Tan, C. Tan, L. Ma, G. T. Liu, L. Lu, and C. L. Yang. Shubnikov-de Haas oscillations of a single layer graphene under dc current bias. Physical Review B, 84(11), Sept. 2011.
[11] D. Vaid. Quantum Hall Effect and Black Hole Entropy in Loop Quantum Gravity. arXiv:1208.3335 [gr-qc, physics:hep-th], Aug. 2012. arXiv: 1208.3335.
[12] H.-C. Wu, M. Abid, Y.-C. Wu, C. Ó Coileáin, A. Syrlybekov, J. F. Han, C. L. Heng, H. Liu, M. Abid, and I. Shvets. Enhanced Shubnikov–De Haas Oscillation in Nitrogen-Doped Graphene. ACS Nano, 9(7):7207–7214, July 2015.
[13] Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim. Tuning the Graphene Work Function by Electric Field Effect. Nano Letters, 9(10):3430–3434, Oct. 2009.
[14] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim. Landau-Level Splitting in Graphene in High Magnetic Fields. Physical Review Letters, 96(13), Apr. 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48916-
dc.description.abstract石墨烯在最近十年成為最為熱門的二維材料。其傳輸性質受到半導體界的重視,期待能夠控制並製作出高效能與低功耗元件。雖然石墨烯的理論與實驗漸趨完備,惟實驗系統的設置有其複雜性,且介觀物理實驗至今仍是大宗,還有許多討論的空間。像是對石墨烯作參雜(doping)、改變應力(strain)、或是含有缺陷(defect)等多種實驗方法,在物理化學性質都出現變化。本論文利用 Landauer-Keldysh 方程結合非穩態格林函數(NEGF)運算模擬實驗,透過考慮引入無序系統(disordered system)及線缺陷(line defect),試圖探討石墨烯在高磁場下的量子霍爾效應(Quantum hall effect)及電阻呈現變化的 Shubnikov-de Hass (SdH)振盪。zh_TW
dc.description.abstractGraphene is a well-known two-dimensional material. Recently, researchers pursuit in developing controllable method to tune the properties of graphene in order to make it prior to existing product in semiconductor industry. Substitution of graphene such as N-doped graphene shows interesting properties compared with pristine graphene. The quantum hall effect can be presented for pristine graphene devices in lots of experiments. While N-doped graphene displays a different phenomena under high external magnetic field, the magneto-resistance (MR) appears to have enhanced the Shubnikov-de Hass (SdH) oscillation but decrease the oscillation frequency. The thesis focus on the transport properties and also SdH oscillation for graphene constructed by tight binding model and discuss the physical phenomena while considering disordered potentials or line defects. The transport properties are analyzed by the Landauer-Keldysh formalism by using non-equilibrium Green function (NEGF) technique.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:11:28Z (GMT). No. of bitstreams: 1
ntu-105-R03245007-1.pdf: 1890665 bytes, checksum: e785ae76360ee342a4c68f4fabbb6f93 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
1.1 Tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Green function in quantum mechanics . . . . . . . . . . . . . . . . . . . 2
1.3 Adding leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Landauer-Buttiker formula . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Non-local measurement . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Landauer-Keldysh formalism . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Disordered system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Graphene Nanoribbons 10
2.1 Transport Properties in GNRs . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Non-equilibrium system of GNRs . . . . . . . . . . . . . . . . . . . . . 13
3 Graphene in external magnetic field 16
3.1 Adding vector potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Landau level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Shubnikov-de Haas Oscillation . . . . . . . . . . . . . . . . . . . 20
4 Experimental Result 22
4.1 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Pristine graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Vacancy in graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Graphene with line defects . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Conclusion 31
Bibliography 32
dc.language.isoen
dc.subject石墨烯zh_TW
dc.subject磁阻zh_TW
dc.subject量子霍爾效應zh_TW
dc.subject舒勃尼科夫-德哈斯振盪zh_TW
dc.subjectQuantum hall effecten
dc.subjectGrapheneen
dc.subjectShubnikov-de Hass oscillationen
dc.subjectMagneto-resistanceen
dc.title石墨烯的SdH振盪zh_TW
dc.titleShubnikov-de Hass Oscillation in Grapheneen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡崇德,林育中,陳松賢
dc.subject.keyword磁阻,量子霍爾效應,舒勃尼科夫-德哈斯振盪,石墨烯,zh_TW
dc.subject.keywordMagneto-resistance,Quantum hall effect,Shubnikov-de Hass oscillation,Graphene,en
dc.relation.page33
dc.identifier.doi10.6342/NTU201603528
dc.rights.note有償授權
dc.date.accepted2016-08-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved