Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48896
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉小蓁(Hsiaw-Chan Yeh)
dc.contributor.authorYu-Tai Huangen
dc.contributor.author黃宇泰zh_TW
dc.date.accessioned2021-06-15T11:11:05Z-
dc.date.available2026-12-31
dc.date.copyright2016-09-13
dc.date.issued2016
dc.date.submitted2016-08-25
dc.identifier.citation(Chinese)
[1.] 葉小蓁 (2006)。《時間序列分析與應用》三版。臺北市,臺灣:臺大法律學院圖書文具部。第1-4章,第6章。
[2.] 劉祥熹,黃日鉦 (2012)。《財務時間序列模型─GARCH模型專論》。 臺北市,臺灣:東華書局股份有限公司。第1-55頁。
[3.] 楊奕農 (2009)。《時間序列模型─經濟與財務上之應用》。 臺北
市,臺灣:東華書局股份有限公司。第1-3章,第5章。
(English)
[1.] Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle, in Petrov, B.N.; Csáki, F., 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, Budapest: Akadémiai Kiadó, p. 267-281.
[2.] Borak, S.; Härdle, W.; and Weron, R. (2005), Stable Distributions, SFB 649 Economic Risk Berlin Discussion Paper 2005-008.
[3.] Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, revised edition, Holden Day, San Francisco.
[4.] Box, G. E. P., Jenkins, G. M. and Reinsel, G, C. (2008), Time Series Analysis: Forecasting and Control, 4th edition. John Wiley & Sons, Inc., p473-500.
[5.] Box, G. E. P. and Pierce, D. A. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association. 65 (332): 1509–1526.
[6.] Campbell, J. Y.; Lo, A. W. and MacKinlay, A. C. (1997), The Econometrics of Financial Markets, 2nd ed. Edition, Princeton University Press, p3-25.
[7.] Cont, R. (2001), Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues, Quantitative Finance, Volume I, p223-236.
[8.] Fama, E. F. (1963), Mandelbrot and the Stable Paretian Hypothesis, The Journal of Business, Vol. 36, No. 4 (Oct., 1963), pp. 420-429.
[9.] Ljung, G. M.; Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika. 65 (2): 297–303.
[10.] Mandelbrot, B. (1963), New Methods in Statistical Economics, Journal of b Political Economy, 71, 421 440, 1963.
[11.] Mandelbrot, B. (1963), The Variation of Certain Speculative Prices, Journal of Business, 36, 394-49, 1963.
[12.] McNeil, A.J.; Frey, R.; and Embrechts, P.(2005), Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press.
[13.] Mittnik, S. and Paolella, M. S. (2003) , Prediction of Financial Downside-Risk with Heavy Tailed Conditional Distributions, Handbook of Heavy Tailed Distributions in Finance, Handbook in Finance, Book 1, Elsevier Science.
[14.] Mittnik, S.; Paolella, M.S.; Rachev, S.T. (1998). Unconditional and Conditional Distributional Models for the Nikkei Index. Asia Pac. Finance. Mark. p99–128.
[15.] Nolan, J. P. (1998), Parameterizations and Modes of Stable Distributions, Statistics & Probability Letters 38, p187-195.
[16.] Nolan, J. P. (1999), Fitting Data and Assessing Goodness-of-Fit with Stable Distributions, in Proceedings of the Conference on Applications of Heavy Tailed Distributions in Economics, Engineering and Statistics, American University, Washington, DC, June 3-5, 1999.
[17.] Nolan, J. P. (2001), Maximum Likelihood Estimation and Diagnostics for Stable Distributions, Lévy Processes: Theory and Applications, p379-395.
[18.] Nolan, J. P. (2003), Modeling Financial Data with Stable Distributions, Handbook of Heavy Tailed Distributions in Finance, Handbook in Finance, Book 1, Elsevier Science.
[19.] Nolan, J. P. (2009), Stable Distributions - Models for Heavy Tailed Data, Birkhauser. Note: in progress, Chapter 1.
[20.] Nolan, J. P. (2014), Financial Modeling with Heavy-Tailed Stable Distributions, WIREs Computational Statistics 2014, 6:45–55, Wiley Periodicals Inc.
[21.] Panorska, A. K., Mittnik, S.and Rachev, S.T. (1995), Stable GARCH Models for Financial Time Series. Applied Mathematics Letters, Volume 8, Issue 5, Pages 33-37.
[22.] Paolella, M. S. (2016), Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability. Econometrics, p1-28.
[23.] Rachev, S.T.; Kim, Y.S.; Bianchi, M.L.; and Fabozzi, F.J. (2011), Financial Models with Lévy Processes and Volatility Clustering, The Frank J. Fabozzi Series, John Wiley & Sons, Inc., p1-84.
[24.] Rachev S. T.; Menn, C.; and Fabozzi, F. J. (2005), Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing, Wiley & Sons, Inc., p81-117.
[25.] Rachev, S.T. and Mittnik, S. (2000), Stable Paretian Models in Finance, John Wiley & Sons, Inc., p1-180.
[26.] Rimmer, R. H. (2008), A Mathematical Description of Markets, A working paper.
[27.] Rroji, E. and Mercuri, L. (2014), Mixed Tempered Stable distribution, Quantitative Finance.
[28.] Ruppert, D. and Matteson, D. S. (2015), Statistics and Data Analysis for Financial Engineering with R Examples, 2nd Edition, Springer, p307-452.
[29.] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6(2), pp. 461-464.
[30.] Snedecor, G. W. and Cochran,W. G. (1989), Statistical Methods, 8th edition, The Iowa State University Press, Ames, IA.
[31.] Tsay, R. S. (2010), Analysis of Financial Time Series, 3rd Edition , John Wiley & Sons, Inc., p1-174.
[32.] Tsay, R. S. (2013), An Introduction to Analysis of Financial Data with R, John Wiley & Sons, Inc., p20-125.
[33.] Tsay, R. S. and Tiao, G. C. (1984). Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models. J. Amer. Statist. Assoc. 79.
[34.] Wei,William W.S. (2006), Time Series Analysis: Univariate and Multivariate Methods, 2nd Edition, Pearson Education, Inc., p366-380.
[35.] Zolotariev, A. (1986). One–Dimensional Stable Distributions. American Mathematical Society, Providence, RI. Russian original, 1983, p1-28.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48896-
dc.description.abstract隨著金融市場蓬勃的發展,投資者能以多元的方式管理自己適合的投資組合。除了風險,投資者最關注的即是投資報酬率。過去幾十年,在財務金融領域裡,其中廣為討論的研究主題之一為投資報酬率的機率結構。在二十世紀中期,財務分析師和學者們已發現,先前建立於常態分配假設之下的研究,其研究結果是錯誤的。他們也發現到,以常態分配的假設下所推論的結果會低估潛在的財務風險。儘管人們知道投資報酬率的機率分布不是常態分配,一些研究人員或實務人員仍然繼續使用常態分配假設的推論,也因此,往往忽略了投資報酬率分布的偏斜與厚尾所帶來的訊息。
根據數學家本華•曼德柏(1963) 與經濟學家尤金•法馬(1965),兩位學者們皆強調投資報酬率的機率分布應套用穩定分配(stable distributions)。在本研究裡,吾人執行財務報酬率的實證研究,以傳統的常態模型和其他厚尾的機率模型(如:拉普拉斯分配、穩定柏拉圖分配等)予以比較分析。吾人進行實證分析的資料來自彭博社(Bloomberg),該資料為6支財務指數 (TWSE, HSI, NKY, SPX, INDU 和DEM/US) 的前一交易日之收盤價(PX_1D_CLOSE),並將此資料轉換成對數報酬率進行分析。本研究分成兩大面向來分析:邊際方法的觀點和條件方法的觀點。
在邊際方法方面(去除時間因素),對數報酬率以單變量常態、甘貝爾、拉普拉斯以及對稱和非對稱的穩定柏拉圖機率模型來進行資料配適,並且以無母數適合度檢定去比較不同機率模型的配適結果。在條件方法方面,考慮到資料的時間相依關係,對數報酬率資料很自然地形成時間序列的架構,因此吾人使用自我迴歸移動平均(ARMA)和廣義自我迴歸條件異質變異(GARCH)的結合模型去配適對數報酬時間序列。根據財務金融學文獻,吾人選取ARMA(1,1)-GARCH(1,1)的模型,並將隨機誤差項(innovation) 設定服從常態、拉普拉斯和非對稱的穩定柏拉圖機率分配。並將其三種分配的估計結果以無母數適合度檢定去比較。
綜合上述的兩種方式,在其他候選模型之中(與常態分配模型做為對照),以非對稱的穩定柏拉圖機率分配去配適對數報酬率的資料,其統計結果通常是最佳的。
zh_TW
dc.description.abstractWith the development of financial markets, market participants manage his or her own portfolio with a great diversity. Besides the risks, what investors concern the most is the asset returns. In the past decades, one of the widely-discussed topics of financial research is the probabilistic structure on asset returns. During mid-20 century, financial analysts and researchers found that all the past research based on Gaussian assumption is fallacious and noticed that this may underestimate the potential of financial risks. In spite of the well-known fact that asset returns are not normally distributed, some researchers and practitioners still maintain the normal inferences and henceforth ignore the information on asymmetry and heavy tail.
According to Mandelbrot (1963) and Fama (1965), stressing on the use of stable distributions, we would like to conduct the empirical study on financial index returns by means of comparisons with the inferences based on normal distribution and other heavy-tailed distributions, such as Laplace distribution and stable Paretian distribution. In this study, from Bloomberg, we collected the closing price of the last trading day (PX_1D_CLOSE) of 6 financial indices (TWSE, HSI, NKY, SPX, INDU and DEM/US) and transformed them into log returns. Then we carried out two-fold analyses: marginal and conditional perspective. In marginal aspect, the returns were fitted by univariate normal, Gumbel, Laplace and (asymmetric and symmetric) stable Paretian models and we compare the results by their own goodness of fits ; whilst in conditional part, reconsidering the temporal dependency into data, the returns constitute time series naturally and therefore we fit the log returns by combination of homoscedastic part (ARMA) and heteroscedastic part (GARCH).

According to finance literature, we fit ARMA(1,1)-GARCH(1,1) with normal, Laplace and stable innovations, which can be compared with goodness of fit. Above all the methods, the statistical inferences based on asymmetric stable Paretian distribution are usually better than the ones based on normality.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:11:05Z (GMT). No. of bitstreams: 1
ntu-105-R03h41004-1.pdf: 3494729 bytes, checksum: 6ced5ebb34ecb0d805e90814ce2aa12b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAcknowledgement i
Chinese Abstract iii
Abstract v
List of Tables ix
List of Figures xi
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation 2
1-3 Objective 2
1-4 Synopsis of the Research 3
Chapter 2 Marginal Models: Time-Independent Methods 5
2-1 Financial Returns 6
2-2 The Statistical Moments of Returns 8
2-3 Marginal Models 12
2-3-1 Heavy-tailed Distributions 12
2-3-2 Stable Paretian Distributions 13
2-3-3 The Candidate Models in this Thesis 19
Chapter 3 Conditional Models: Time-Dependent Methods 21
3-1 The Return Series 21
3-2 Conditional Homoscedastic Models 23
3-3 Conditional Heteroscedastic Models 27
3-3-1 GARCH 28
3-3-2 ARMA-GARCH 29
Chapter 4 Emipirical Study 31
4-1 The Real Data 31
4-2 Exploratory Data Analysis 36
4-3 Marginal Models (Distributional Specification) 41
4-4 Conditional Models 53
4-5 Results of Empirical Study 75
Chapter 5 Discussion 76
Reference 78
Appendix 82
Appendix 1 List of Common Parametric Models 82
Appendix 2 Skewed Generalized T Distribution 85
Appendix 3 More Details on Stable Distributions 87
Appendix 4 R Code 88
[Marginal Methods] 89
[Conditional Methods] 95
dc.language.isoen
dc.title以邊際與條件方法,對財務報酬率的機率結構探討zh_TW
dc.titleThe Study of the Probabilistic Structures on Financial Returns by Marginal and Conditional Methodsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝(Yaw-Huei Wang),許耀文(Yao-Wen Hsu)
dc.subject.keyword對數報酬率,厚尾機率分布,穩定柏拉圖分配,自我迴歸移動平均-廣義自我迴歸條件異質變異模型,zh_TW
dc.subject.keywordLog Returns,Heavy Tail Distributions,Stable Paretian Distributions,ARMA-GARCH Models,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201603546
dc.rights.note有償授權
dc.date.accepted2016-08-25
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved