Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48887
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王儷穎(Li-Ying Wang)
dc.contributor.authorJia-Shin Linen
dc.contributor.author林佳新zh_TW
dc.date.accessioned2021-06-15T11:10:55Z-
dc.date.available2022-02-18
dc.date.copyright2021-02-25
dc.date.issued2021
dc.date.submitted2021-02-07
dc.identifier.citation1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
2. 衛生福利部國民健康署。中華民國106年癌症登記報告。取自:https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269 pid=12235,取得日期:2020年9月28日。(Ministry of Health and Welfare, Health Promotion Administration. Cancer registry annual report, 2017. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269 pid=12235. Accessed Sep. 28, 2020.)
3. 衛生福利部統計處。民國108年死因統計年報。取自:https://dep.mohw.gov.tw/dos/cp-4927-55571-113.html,取得日期:2020年9月28日。(Ministry of Health and Welfare, Department of Statistic. Annual death report, 2019. https://dep.mohw.gov.tw/dos/cp-4927-55571-113.html. Accessed Sep. 28, 2020.)
4. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129-37.
5. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31:363-72.
6. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24.
7. Halperin EC, Wazer DE, Brady LW, Perez CA. Molecular cancer and radiation biology. Perez Brady's principles and practice of radiation oncology. 7th Edition. Lippincott Williams Wilkins. 2018. p282-332.
8. Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal. 2018;29:1447-87.
9. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48-60.
10. Jaworski C, Mariani JA, Wheeler G, Kaye DM. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61:2319-28.
11. Eldabaje R, Le DL, Huang W, Yang LX. Radiation-associated Cardiac Injury. Anticancer Res. 2015;35:2487-92.
12. Nielsen KM, Offersen BV, Nielsen HM, Vaage-Nilsen M, Yusuf SW. Short and long term radiation induced cardiovascular disease in patients with cancer. Clin Cardiol. 2017;40:255-61.
13. Chang WH. Effects of exercise preconditioning on radiation-induced cardiac dysfunction - animal study. Master's thesis. National Taiwan University. 2019.
14. Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 2013;25:578-85.
15. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31:363-72.
16. Ahmed KA, Correa CR, Dilling TJ, et al. Altered fractionation schedules in radiation treatment: a review. Semin Oncol. 2014;41:730-50.
17. Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56:1045-8.
18. McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167-75.
19. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987-98.
20. Seddon B, Cook A, Gothard L, Salmon E, Latus K, Underwood SR, Yarnold J. Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiother Oncol. 2002;64:53-63.
21. Marks LB, Yu X, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63:214-23.
22. Heidenreich PA, Hancock SL, Vagelos RH, Lee BK, Schnittger I. Diastolic dysfunction after mediastinal irradiation. Am Heart J. 2005;150:977-82.
23. Nellessen U, Zingel M, Hecker H, Bahnsen J, Borschke D. Effects of radiation therapy on myocardial cell integrity and pump function: which role for cardiac biomarkers? Chemotherapy. 2010;56:147-52.
24. Demissei BG, Freedman G, Feigenberg SJ, et al. Early changes in cardiovascular biomarkers with contemporary thoracic radiation therapy for breast cancer, lung cancer, and lymphoma. Int J Radiat Oncol Biol Phys. 2019;103:851-60.
25. Krüse JJ, Zurcher C, Strootman EG, et al. Structural changes in the auricles of the rat heart after local ionizing irradiation. Radiother Oncol. 2001;58:303-11.
26. Inoue T, Zawaski JA, Sheehan V, et al. Echocardiography differentiates lethally irradiated whole-body from partial-body exposed rats. Front Cardiovasc Med. 2018;5:138.
27. Seemann I, Gabriels K, Visser NL, et al. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol. 2012;103:143-50.
28. Subramanian V, Seemann I, Merl-Pham J, et al. Role of TGF Beta and PPAR Alpha Signaling Pathways in Radiation Response of Locally Exposed Heart: Integrated Global Transcriptomics and Proteomics Analysis. J Proteome Res. 2017;16:307-18.
29. Barjaktarovic Z, Shyla A, Azimzadeh O, et al. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol. 2013;106:404-10.
30. Taunk NK, Haffty BG, Kostis JB, et al. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39.
31. Humeres C, Frangogiannis NG. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci. 2019;4:449-67.
32. Venkatesulu BP, Mahadevan LS, Aliru ML, et al. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl Sci. 2018;3:563-72.
33. Korpela E, Liu SK. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage. Radiation oncology (London, England).2014;9:266.
34. Ma CX, Zhao XK, Li YD. New therapeutic insights into radiation-induced myocardial fibrosis. Ther Adv Chronic Dis. 2019;10:1-10.
35. Myers J. Exercise and cardiovascular health. Circulation, 2003;107:e2-e5. Nystoriak MA, Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med. 2018;5:135.
36. Wilson MG, Ellison GM, Cable NT. Basic science behind the cardiovascular benefits of exercise. British Journal of Sports Medicine 2016;50:93-9
37. Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda). 2014;29:27-38.
38. Weeks KL, Bernardo BC, Ooi JYY, et al. The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. In: Xiao J, ed. Exercise for Cardiovascular Disease Prevention and Treatment: From Molecular to Clinical, Part 2. Singapore: Springer Singapore; 2017.p187-210.
39. Mann N, Rosenzweig A. Can exercise teach us how to treat heart disease? Circulation. 2012;126:2625-35.
40. Boström P, Mann N, Wu J, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143:1072-83.
41. Thirupathi, A., de Souza, CT. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem. 2017;73,487-94
42. Jia D, Hou L, Lv Y, Xi L, Tian Z. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1alpha/PI3K/Akt signaling. J Cell Physiol. 2019;234:23705-18.
43. Nunes RB, Alves JP, Kessler LP, et al. Aerobic exercise improves the inflammatory profile correlated with cardiac remodeling and function in chronic heart failure rats. Clinics. 2013;68:876-82.
44. Daliang Z, Lifang Y, Hong F, et al. Netrin-1 plays a role in the effect of moderate exercise on myocardial fibrosis in rats. PLoS One. 2019;14:e0199802.
45. Xu X, Wan W, Powers AS, et al. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. J Mol Cell Cardiol. 2008;44:114-22.
46. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303-6.
47. Pacher P, Nagayama T, Mukhopadhyay P, et al. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008;3:1422.
48. Konecny F. Tools Techniques for Pressure-Volume Hemodynamic Studies. 2017. New York: Transonic Systems Inc.
49. Ping Z, Peng Y, Lang H, et al. Oxidative Stress in Radiation-Induced Cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143.
50. Zhao W, Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 2009; 16:130-43.
51. Li X, Cui W, Hull L, et al. IL-18 binding protein (IL-18BP) as a novel radiation countermeasure after radiation exposure in mice. Sci Rep. 2020;10:18674
52. Saiki H, Moulay G, Guenzel AJ, et al. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313:H392-H407.
53. Rosen E, Kryndushkin D, Aryal B, et al. Acute total body ionizing gamma radiation induces long-term adverse effects and immediate changes in cardiac protein oxidative carbonylation in the rat. PLoS One. 2020;15:e0233967.
54. Shukla J, Khan NM, Thakur VS, et al. L-arginine mitigates radiation-induced early changes in cardiac dysfunction: the role of inflammatory pathways. Radiat Res. 2011;176:158-69.
55. Soliman AF, Anees LM, Ibrahim DM. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:819-32.
56. Medhora M, Gao F, Glisch C, et al. Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling. J Radiat Res. 2015;56:248-60.
57. Farhood B, Aliasgharzadeh A, Amini P, et al. Radiation-Induced Dual Oxidase Upregulation in Rat Heart Tissues: Protective Effect of Melatonin. Medicina (Kaunas). 2019;55:317.
58. Gürses I, Özeren M, Serin M, et al. Histopathological evaluation of melatonin as a protective agent in heart injury induced by radiation in a rat model. Pathol Res Pract. 2014;210:863-71.
59. Kiscsatári L, Sárközy M, Kővári B, et al. High-dose Radiation Induced Heart Damage in a Rat Model. In Vivo. 2016;30:623-31.
60. Salata C, Ferreira-Machado SC, De Andrade CB, et al. Apoptosis induction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy. Int J Radiat Biol. 2014;90:284-90.
61. Zhang K, He X, Zhou Y, et al. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats. Radiat Res. 2015;184:611-20.
62. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014; 27:911-39.
63. Albini A, Pennesi G, Donatelli F, et al Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 2010;102:14-25.
64. Sawyer DB, Siwik DA, Xiao L, et al. Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol. 2002;34:379-88.
65. Siu PM, Bryner RW, Martyn JK, et al. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004;18:1150-2.
66. DeLeon-Pennell KY, de Castro Bras LE, Iyer RP, et al. P. gingivalis lipopolysaccharide intensifies inflammation post-myocardial infarction through matrix metalloproteinase-9. J Mol Cell Cardiol. 2014;76:218–26.
67. Peterson JT, Li H, Dillon L, et al. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res. 2000;46:307–315.
68. Sárközy M, Gáspár R, Zvara Á, et al. Selective Heart Irradiation Induces Cardiac Overexpression of the Pro-hypertrophic miR-212. Front Oncol. 2019;9:598
69. Kwak HB, Kim JH, Joshi K, et al. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J. 2011;25:1106-17.
70. Krüse JJ, Bart CI, Visser A, et al. Changes in transforming growth factor-beta (TGF-beta 1), procollagen types I and II mRNA in the rat heart after irradiation. Int J Radiat Biol. 1999;75:1429-36.
71. Boerma M, Roberto KA, Hauer-Jensen M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol. Int J Radiat Oncol Biol Phys. 2008;72:170-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48887-
dc.description.abstract研究背景與目的:放射治療是常見的胸腔癌症治療方式之一。放射照射會誘發生成大量的游離自由基,造成細胞凋亡和壞死。由於照射過程中,心臟會受到非標的劑量之照射造成傷害。受傷後的心肌會進行重塑,過程中所形成的纖維化會破壞正常組織結構,造成心臟功能異常,最終可能導致心臟衰竭。前置性運動訓練已知可以增加心肌對放射照射傷害的抵抗力,但放射照射後再介入運動訓練,是否可以減緩放射相關的心肌毒性則尚不清楚。因此本研究的目的是以動物模式探討放射照射後介入有氧運動訓練對心肌功能異常的影響並探討可能之相關機制。研究方法:本研究將18隻7-8週大之成年雄性Wistar大鼠,以每組6隻隨機分配到控制組(Ctrl)、放射照射組(IR)及放射照射後介入運動訓練組(IREx)。IR及IREx組的大鼠先接受心臟分次放射照射,劑量為5 Gy/次、1次/天、5天總量共25 Gy。IREx組大鼠在完成放射照射一週後,進行為期6週、每週5天、每次60分鐘之有氧運動訓練。所有組別的大鼠在IR和IREx組放射照射4週後(T1)和7週後(T2)兩個時間點進行心臟超音波測量。所有組別的大鼠在IREx組運動訓練後,以導電心導管進行活體心臟功能測試(壓力-體積分析)。實驗結束後,犧牲大鼠取出其左心室組織進行後續生化分析。心肌的氧化壓力傷害以化學冷光分析儀檢測自由基含量;抗氧化能力以反轉錄聚合酶連鎖反應分析CuZnSOD及MnSOD mRNA表現量;心肌重塑和纖維化則利用Masson's trichrome染色分析膠原蛋白容積分數(collagen volume fraction,CVF),及西方墨點法分析MMP-2、MMP-9、type I collagen和type III collagen蛋白表現量。研究結果:放射照射後,心臟超音波結果顯示,和Ctrl組相比,IR組在T1和T2時的FS(p=0.01和p=0.02)、EF(皆為p=0.02)、SV(皆為p=0.002)、CO(p=0.01和p=0.001)和EDV(p=0.05和p=0.03)均顯著較低,IVRT則在T2時顯著較長(p<0.001);導電心導管結果顯示,和Ctrl組相比,IR組+dP/dtmax(p=0.001)和-dP/dtmax(p=0.01)顯著較低且EDP(p<0.001)顯著較高。氧化壓力結果顯示,IR組的總氧自由基(p=0.02)和超氧陰離子(p<0.001)含量均顯著較Ctrl組高。IR組的CVF(p<0.001)和type III collagen蛋白表現量(p=0.03)皆顯著較Ctrl組高,IR組的MMP-2蛋白表現量顯著較Ctrl組低(p=0.04)。放射照射後介入6週有氧運動訓練,心臟超音波顯示,和IR組相比,IREx組在T2的FS(p=0.02)和EF(p=0.01)顯著較高,ESV顯著較低(p=0.04),IVRT有較短的趨勢(p=0.07)。導電心導管結果顯示,IREx組的+dP/dtmax(p<0.001)和-dP/dtmax(p=0.002)顯著較IR組高,EDP顯著較IR組低(p<0.001)。IREx組的CuZnSOD(p=0.03)和MnSOD(p=0.02)mRNA表現量均顯著較IR組高。纖維化分析結果顯示,IREx組的CVF顯著較IR組低(p=0.003)。結論:放射照射後介入6週有氧運動訓練可透過減少心肌之氧化壓力和正調控心肌之抗氧化能力來降放射照射的心臟毒性,改善心臟功能。zh_TW
dc.description.abstractBackground: Radiotherapy (RT) is one of common treatments for patients with thoracic cancers. During mediastinal radiation, heart is often included in the irradiation
field and all components of the heart are susceptible to radiation-related oxidative stress damage. Exercise preconditioning has been shown to enhance the resistance of heart to radiation-induced myocardial injury. However, whether exercise intervention after irradiation would attenuate radiation-induced cardiotoxicity remains to be determined. The purpose of this study was to investigate the effects of exercise intervention after irradiation on radiation-induced myocardial dysfunction and related mechanisms were also explored in the animal model. Methods: A total of 18 adult male Wistar rats aged 7 to 8 week-old were randomly assigned to control (Ctrl), irradiation (IR), or exercise training after irradiation (IREx) groups (n=6 per group). The rats in IR and IREx received irradiation to the heart region once daily for 5 days with a dose of 5 Gy/day (total dose of 25 Gy). One week after irradiation, the rats in IREx underwent 60 min/day treadmill exercise training 5 days per week for 6 weeks. Cardiac functions were determined by non-invasive transthoracic echocardiogram performed at 4 weeks (time point 1, T1) and 7 weeks (time point 2, T2) post irradiation. Invasive hemodynamic measurements using in vivo pressure-volume analysis were performed after all interventions were completed. The rats were sacrificed immediately after invasive hemodynamic measurements and the hearts were removed en bloc. Oxidative stress was determined by reactive oxygen species (ROS) level. Antioxidant capacity was determined by analyzing mRNA expression levels of CuZnSOD and MnSOD. Myocardial remodeling and fibrosis were examined by analyzing collagen volume fraction (CVF) from Masson’s trichrome staining, and protein expression levels of MMP-2, MMP-9, type I and type III collagen using Western blotting. Results: Echocardiographic data showed that FS (p=0.01 and p=0.02 for T1 and T2, respectively), EF (both p=0.02 for T1 and T2), SV (both p=0.002 for T1 and T2), CO (p=0.01 and p=0.001 for T1 and T2, respectively), and EDV (p=0.05 and p=0.03 for T1 and T2, respectively) were significantly lower at T1 and T2, and IVRT was significantly longer (p<0.001) at T2 in IR group than those of Crtrl group. In IREx group, FS (p=0.02) and EF (p=0.01) were significantly higher, and ESV (p=0.04) was significantly lower at T2 compared to those of IR group. Pressure-volume analysis showed that +dP/dtmax (p=0.001) and -dP/dtmax (p=0.01) were significantly lower, and EDP (p<0.001) was significantly higher in IR group than those of Ctrl group. In IREx group, +dP/dtmax (p<0.001) and -dP/dtmax (p=0.002) were significantly higher, and EDP (p<0.001) was significantly lower than those of IR group. In IR group, the ROS level (p<0.05), CVF (p<0.001), type III collagen protein expression level (p=0.03) were significantly higher than those of Ctrl group, and MMP-2 protein expression level (p=0.04) was significantly lower than those of Ctrl group. IREx group demonstrated significantly lower ROS level (p<0.05) and CVF (p=0.003) compared to those of IR group. Expression levels of CuZnSOD (p=0.03) and MnSOD (p=0.02) were significantly higher in IREx than those of IR group. Conclusions: Exercise training after irradiation could attenuate radiation-induced cardiotoxicity and preserve cardiac function by reducing oxidative stress and improving antioxidant defense capacity of myocardium.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:10:55Z (GMT). No. of bitstreams: 1
U0001-0702202109014000.pdf: 3315605 bytes, checksum: 673847e74ab3bf9666a00401ce1d98ea (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
表目錄 ix
圖目錄 x
第一章、前言 1
第一節、研究背景與目的 1
第二節、研究假說 2
第三節、研究重要性 2
第二章、文獻回顧 3
第一節、放射治療 3
第二節、放射治療的心臟毒性 4
第三節、放射治療引起心臟毒性的機制 6
第四節、運動訓練的心臟保護作用 8
第三章、材料與研究方法 11
第一節、研究設計 11
第二節、研究動物與倫理聲明 11
第三節、樣本數估計 11
第四節、實驗流程 11
第五節、放射照射 12
第六節、有氧運動訓練計畫 13
第七節、心臟超音波測量 13
第八節、導電心導管壓力-體積曲線測量 14
第九節、組織學分析 16
第十節、化學冷光分析 18
第十一節、反轉錄聚合酶鏈式反應 19
第十二節、西方墨點法 22
第十三節、研究變項 24
第十四節、資料處理與統計分析 26
第四章、結果 27
第一節、基本資料 27
第二節、組織學分析結果 27
第三節、氧化壓力分析結果 27
第四節、非侵入及侵入性心臟功能分析 28
第五節、心肌抗氧化能力分析結果 29
第六節、心肌纖維化及重塑分析 29
第五章、討論 31
第六章、結論 37
參考文獻 38
附錄 63
dc.language.isozh-TW
dc.subject抗氧化能力zh_TW
dc.subject放射照射zh_TW
dc.subject運動訓練zh_TW
dc.subject心肌功能zh_TW
dc.subject纖維化zh_TW
dc.subjectIrradiationen
dc.subjectAntioxidant defense capacityen
dc.subjectFibrosisen
dc.subjectCardiac functionen
dc.subjectExercise trainingen
dc.title探討運動訓練介入對放射照射誘發之心肌功能異常之成效
zh_TW
dc.titleEffects of Exercise Training on Radiation-Induced Myocardial Dysfunction
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李安生(An-Sheng Lee),謝忱希(Chen-Hsi Hsieh)
dc.subject.keyword放射照射,運動訓練,心肌功能,纖維化,抗氧化能力,zh_TW
dc.subject.keywordIrradiation,Exercise training,Cardiac function,Fibrosis,Antioxidant defense capacity,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202100641
dc.rights.note有償授權
dc.date.accepted2021-02-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-0702202109014000.pdf
  未授權公開取用
3.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved