請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48874
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
dc.contributor.author | Cian-Cian Hsieh | en |
dc.contributor.author | 謝謙謙 | zh_TW |
dc.date.accessioned | 2021-06-15T11:10:41Z | - |
dc.date.available | 2020-02-08 | |
dc.date.copyright | 2017-02-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-27 | |
dc.identifier.citation | 陳依甄。2012。水稻轉錄因子OsbHLH061與OsbHLH068在非生物逆境下基因表現及功能性分析。碩士論文
廖珮君。2014。轉錄因子OsbHLH068可促進植物鹽逆境耐受性。碩士論文 Alvarez-Venegas, R., Sadder, M., Hlavacka, A., Baluska, F., Xia, Y., Lu, G., et al. (2006a) The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc. Natl. Acad. Sci. U S A 103: 6049-6054. Alvarez-Venegas, R., Xia, Y., Lu, G. and Avramova, Z. (2006b) Phosphoinositide 5-phosphate and phosphoinositide 4-phosphate trigger distinct specific responses of Arabidopsis genes. Plant Signal Behav. 1: 140-151. Alvarez-Venegasa, R. and Avramova, Z. (2002) SET-domain proteins of the Su(var)3-9, E(z) and Trithorax families. Gene 285: 25-37. Andres, F. and Coupland, G. (2012) The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13: 627-639. Bailey, P., Martin, C., Toledo-Ortiz, G., Quail, P., Huq, E., Heim, M., et al. (2003) Update on the basic Helix-Loop- Helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15: 2497-2501. Baumbusch, L., Thorstensen, T., Krauss, V., Fischer, A., Naumann, K., Assalkhou, R., et al. (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res. 29: 4319-4333. Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D., Hajirezaei, M.-R., Borriss, R. and von Wirén, N. (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 174: 3-11. Castillon, A., Shen, H., Huq, E. (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12 (11): 514-521. Chen, H.C., Hwang, S.G., Chen, S.M., Shii, C.T. and Cheng, W.H. (2011) ABA-mediated heterophylly is regulated by differential expression of 9-cis-epoxycarotenoid dioxygenase 3 in lilies. Plant Cell Physiol. 52: 1806-1821. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., et al. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-2743. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., et al. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17: 1043-1054. Chinnusamy, V., Zhu, J.K. and Sunkar, R. (2010) Gene regulation during cold stress acclimation in plants. Methods Mol. Biol. 639: 39-55. Cui, J., You, C., Zhu, E., Huang, Q., Ma, H. and Chang, F. (2016) Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell 28: 1078-1093. Ding, W., Yu, Z., Tong, Y., Huang, W., Chen, H. and Wu, P. (2009) A transcription factor with a bHLH domain regulates root hair development in rice. Cell Res. 19: 1309-1311. Ding, Y., Ndamukong, I., Zhao, Y., Xia, Y., Riethoven, J.J., Jones, D.R., et al. (2012) Divergent functions of the myotubularin (MTM) homologs AtMTM1 and AtMTM2 in Arabidopsis thaliana: evolution of the plant MTM family. Plant J. 70: 866-878. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., et al. (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18: 926-936. Du, Z., Zhou, X., Ling, Y., Zhang, Z. and Su, Z. (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38: W64-70. Feller, A., Machemer, K., Braun, E.L. and Grotewold, E. (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66: 94-116. Gamborg, O., Miller, R. and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158. Gowda, V.R.P., Henry, A., Yamauchi, A., Shashidhar, H.E. and Serraj, R. (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res. 122: 1-13. Gubler, F., Millar, A.A. and Jacobsen, J.V. (2005) Dormancy release, ABA and pre-harvest sprouting. Curr. Opin. Plant Biol. 8: 183-187. Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722. Heang, D. and Sassa, H. (2012) Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PloS one 7: e31325. Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B. and Bailey, P.C. (2003) The basic helix-loop- helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20: 735-747. Ishikawa, R., Aoki, M., Kurotani, K., Yokoi, S., Shinomura, T., Takano, M., et al. (2011) Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285: 461-470. Ito, S., Song, Y., Josephson-Day, A., Miller, R., Breton, G., Olmstead, R., et al. (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. PNAS 109: 3582-3587. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., et al. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47: 141-153. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., et al. (2001) Regulation of drought tolerance by gene manipulation of 9-cis- epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27: 325-333. Jiang, J., Li, J., Xu, Y., Han, Y., Bai, Y., Zhou, G., et al. (2007) RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Plant Cell Environ. 30: 690-699. Jiang, Y., Yang, B. and Deyholos, M.K. (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol. Genet. Genomics 282: 503-516. Kardailsky, I., Shukla, V., Ahn, J., Dagenais, N., Christensen, S., Nguyen, J., et al. (1999) Activation tagging of the floral inducer FT. Science 286: 1962-1965. Karssen, C., Brinkhorst-van der Swan, D., Breekland, A. and Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157: 158-165. Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., et al. (2002) Hd3a, a rice ortholog of the Arabidopsis FT Gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43: 1096-1105. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. and Shimamoto, K. (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135: 767-774. Komiya, R., Yokoi, S. and Shimamoto, K. (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136: 3443-3450. Kondrashov, F., Rogozin, I., Wolf, Y. and Koonin, E. (2002) Selection in the evolution of gene duplications. Genome Biol. 3: RESEARCH0008. Kondrashov, F.A. (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. Biol. Sci. 279: 5048-5057. Lee, S.B., Lee, S.J. and Kim, S.Y. (2015) AtERF15 is a positive regulator of ABA response. Plant Cell Rep. 34: 71-81. Leung, J. and Giraudat, J. (1998) Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 199-222. Li, F., Guo, S., Zhao, Y., Chen, D., Chong, K. and Xu, Y. (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 29: 977-986. Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., et al. (2006) Genome-wide analysis of basic/helix-loop- helix transcription factor family in rice and Arabidopsis. Plant Physiol. 141: 1167-1184. Lin, P.C., Hwang, S.G., Endo, A., Okamoto, M., Koshiba, T. and Cheng, W.H. (2007) Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol. 143: 745-758. Liu, W., Tai, H., Li, S., Gao, W., Zhao, M., Xie, C., et al. (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 201: 1192-1204. Liu, Y., Ji, X., Nie, X., Qu, M., Zheng, L., Tan, Z., et al. (2015) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol. 207: 692-709. MacRobbie, E. (1998) Signal transduction and ion channels in guard cells. Phil.Trans. R. Soc. Lond. B 353: 1475-1488. Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y. and Oda, K. (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J. 37: 720-729. Makkena, S. and Lamb, R. (2013) The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC Plant Biol. 13:1. Maurya, J.P., Sethi, V., Gangappa, S.N., Gupta, N. and Chattopadhyay, S. (2015) Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development. Plant J. 83: 439-450. Mouradov, A., Cremer, F. and Coupland, G. (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell Suppl. 14: S111-S130. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. Murre, C., McCaw, P. and Baltimore, D. (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777-783. Ndamukong, I., Jones, D.R., Lapko, H., Divecha, N. and Avramova, Z. (2010) Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PloS one 5: e13396. North, H.M., De Almeida, A., Boutin, J.P., Frey, A., To, A., Botran, L., et al. (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J. 50: 810-824. Ohno, S. (1970) Evolution by gene duplication. Berlin, Germany: Springer. Pharis, R.P., King, R.W. (1985) Gibberellins and reproductive development in seed plants. Annu. Rev. Plant Physiol. 36: 517–568. Pires, N. and Dolan, L. (2010) Origin and diversification of basic-helix- loop-helix proteins in plants. Mol. Biol. Evol. 27: 862-874. Price, A., Tomos, A. and Virk, D. (1997) Genetic dissection of root growth in rice (Oryza sativa L.) I: a hydrophonic screen. Theor. Appl. Genet. 95: 132-142. Proveniers, M.C. and van Zanten, M. (2013) High temperature acclimation through PIF4 signaling. Trends Plant Sci. 18: 59-64. Qin, C., Li, Y., Gan, J., Wang, W., Zhang, H., Liu, Y., et al. (2013) OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice. Plant Cell Physiol. 54: 129-137. Radi, A., Lange, T., Niki, T., Koshioka, M. and Lange, M.J. (2006) Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants. Plant Physiol. 140: 528-536. Reinecke, D.M., Wickramarathna, A.D., Ozga, J.A., Kurepin, L.V., Jin, A.L., Good, A.G., et al. (2013) Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant Physiol. 163: 929-945. Riboni, M., Robustelli Test, A., Galbiati, M., Tonelli, C. and Conti, L. (2014) Environmental stress and flowering time: the photoperiodic connection. Plant Signal Behav. 9: e29036. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47. Saleh, A., Alvarez-Venegas, R., Yilmaz, M., Le, O., Hou, G., Sadder, M., et al. (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encodeproteins with divergent biochemical functions. Plant Cell 20: 568-579. Seiler, C., Harshavardhan, V.T., Rajesh, K., Reddy, P.S., Strickert, M., Rolletschek, H., et al. (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J. Exp. Bot. 62: 2615-2632. Seo, D.H., Ryu, M.Y., Jammes, F., Hwang, J.H., Turek, M., Kang, B.G., et al. (2012) Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol. 160: 556-568. Seo, M., Hanada, A., Kuwahara, A., Endo, A., Okamoto, M., Yamauchi, Y., et al. (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 48: 354-366. Serraj, R., Krishnamurthy, L., Kashiwagi, J., Kumar, J., Chandra, S. and Crouch, J.H. (2004) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res. 88: 115-127. Sharma, N., Xin, R., Kim, D.H., Sung, S., Lange, T. and Huq, E. (2016) NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 143: 682-690. Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A. and Imaizumi, T. (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66: 441-464. Sun, C., Fang, J., Zhao, T., Xu, B., Zhang, F., Liu, L., et al. (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell 24: 3235-3247. Tamaki, S., Matsuo, S., Wong, H., Yokoi, S. and Shimamoto, K. (2007) Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036. Toledo-Ortiz, G. (2003) The Arabidopsis basic/Helix-Loop- Helix transcription factor family. Plant Cell 15: 1749-1770. Tsuji, H., Taoka, K. and Shimamoto, K. (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr. Opin. Plant Biol. 16: 228-235. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., et al. (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45: 1097-1102. Wang, J., Hu, J., Qian, Q. and Xue, H.W. (2013) LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Mol. Plant 6: 514-527. Wang, W.S., Zhu, J. and Lu, Y.T. (2014) Overexpression of AtbHLH112 suppresses lateral root emergence in Arabidopsis. Funct. Plant Biol. 41: 342. Wigge, P., Kim, M., Jaeger, K., Busch, W., Schmid, M., Lohmann, J., et al. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056-1059. Wu, W. and Cheng, S. (2014) Root genetic research, an opportunity and challenge to rice improvement. Field Crops Res. 165: 111-124. Wu, H., Ye, H., Yao, R., Zhang, T. and Xiong, L. (2015) OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci. 232: 1-12. Xing, D.H., Lai, Z.B., Zheng, Z.Y., Vinod, K.M., Fan, B.F. and Chen, Z.X. (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol. Plant 1: 459-470. Yoshida, S., Fomo, D., Cook, J. and Gomez, K. (1976) Laboratory manual for physiological studies of rice. Zhang, C., Liu, J., Zhao, T., Gomez, A., Li, C., Yu, C., et al. (2016) A drought-inducible transcription factor delays reproductive timing in rice. Plant Physiol. 171: 334-343. Zhao, Y., Hu, Y., Dai, M., Huang, L. and Zhou, D.X. (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21: 736-748. Zhao, X.L., Shi, Z.Y., Peng, L.T., Shen, G.Z. and Zhang, J.L. (2011) An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15. N. Biotechnol. 28: 788-797. Zhou, J., Li, F., Wang, J.L., Ma, Y., Chong, K. and Xu, Y.Y. (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J. Plant Physiol. 166: 1296-1306. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48874 | - |
dc.description.abstract | basic/Helix-Loop-Helix (bHLH) 為第二大的植物轉錄因子家族,參與調控植物的發育和生理作用。公開的微陣列數據顯示OsbHLH068受乾旱和鹽逆境誘導表現。由於OsbHLH068在調節水稻非生物逆境反應和生長發育下所扮演的角色仍然所知甚少,本研究主要探討OsbHLH068及其同源基因AtbHLH112的功能。組織化學GUS染色顯示,從營養生長期到生殖生長期的轉變過程中,OsbHLH068和AtbHLH112的表現部位有高度的相似性。此外,OsbHLH068的轉錄表現受黑暗所抑制。異質過量表現OsbHLH068在阿拉伯芥中會延遲種子發芽和促進根的伸長。然而AtbHLH112降低表現的突變植株則加速種子發芽,而對根的伸長沒有影響。在生殖生長期,異質過量表現OsbHLH068的阿拉伯芥和AtbHLH112降低表現的突變株皆顯示延遲開花的特性。此外,由遺傳互補實驗顯示,以內生AtbHLH112起動子驅動位於細胞核的GFP-OsbHLH068或OsbHLH068-GFP蛋白的表現,雖可恢復萌芽之缺陷,但卻使原先Atbhlh112突變體的開花更加延遲。另外,DNA微陣列和qPCR數據顯示,開花基因SOC1和FT在異質過量表現OsbHLH068的阿拉伯芥中表現量下降。而GA20ox1及GA3ox1表現量則上升,表示轉殖阿拉伯芥延遲開花可能是由於改變吉貝素代謝或合成的結果。以上數據說明OsbHLH068和AtbHLH112雖然同為F亞科中的同源基因,且在植物耐鹽逆境下扮演相似的角色,但在開花時間上的調控有著相反作用,此現象可能來自趨異演化的結果,並顯示bHLH可能在單雙子葉植物中扮演不同角色。 | zh_TW |
dc.description.abstract | The second largest transcription factor (TF) family, basic/Helix-Loop-Helix (bHLH), plays a regulatory role in plant developmental and physiological processes.Analysis of publicly available microarray data revealed that the expression ofOsbHLH068 was up-regulated under both drought and salt stress conditions. However,the roles of OsbHLH068 in regulating rice abiotic stress response and developmentalprocess remain poorly known. Therefore, in this study, we aimed to characterize theregulatory roles of OsbHLH068 and its homolog, AtbHLH112. Histochemical GUSstaining indicated that the spatiotemporal expression of OsbHLH068 was highly similar to that of AtbHLH112 during the juvenile-to- adult phase transition. Besides, the
transcriptional expression of OsbHLH068 was reduced under darkness conditions. Heterologous over-expression of OsbHLH068 in Arabidopsis delayed seed germinationand increased root elongation, while down-expression of AtbHLH112 in mutant accelerated seed germination but displayed no effects on root elongation. At reproductive stage, both the OsbHLH068-overexpessed transgenic Arabidopsis and Atbhlh112 mutant displayed a late-flowering phenotype. Moreover, complementary expression of OsbHLH068-GFP driven by an AtbHLH112 promoter could restore the germination deficiency of Atbhlh112 mutant but caused more severe delay flowering. Microarray and qPCR data revealed that the expressions of SOC1 and FT were down-regulated in OsbHLH068-overexpessed Arabidopsis. Interestingly, the expression of GA20ox1 and GA3ox1 were up-regulated, which indicated that the delay of flowering time in heterologous OsbHLH068 overexpression transgenic Arabidopsis maybe due to the alteration of GA biosynthesis or metabolism. Taken together, these data illustrate that OsbHLH068 and AtbHLH112, two homologs in F subfamily, play a similar role in plant response to salt stress but act oppositely in controlling flowering time, and which may result from divergent evolution. In other word, OsbHLH068 and AtbHLH112 may function differently either in rice or Arabidopsis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:41Z (GMT). No. of bitstreams: 1 ntu-105-R03621104-1.pdf: 3461481 bytes, checksum: 5bf266b2037504c728445ae530e3ad63 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Chinese Abstract 1
English Abstract 2 List of Tables and Figures 7 Abbreviation List 10 Chapter I. OsbHLH068 and AtbHLH112, two homologs in F subfamily, confer salt tolerance but act oppositely in controlling flowering time of Arabidopsis Introduction 12 Plant bHLH transcription factor family 12 The role of transcription factors in abiotic stress tolerance 13 Flowering time control in rice and Arabidopsis 15 Materials and Methods 18 Plant materials and growth conditions 18 RNA extraction and cDNA synthesis 19 Transgene constructs 19 Reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR) 20 Spatiotemporal gene expression and protein subcellular localization 21 Microarray and data analysis 21 Results 23 Salt induces OsbHLH068 expression in rice 23 Over-expression of OsbHLH068 confers salt tolerance in Arabidopsis 24 OsbHLH068 and AtbHLH112 act oppositely in controlling flowering time 26 The spatiotemporal expression of OsbHLH068 in rice 28 Comparative transcriptomic analysis of OsbHLH068-overexpressed transformant and Col-0 29 Common differentially expressed genes between OsbHLH068- and AtbHLH112- overexpressed Arabidopsis 30 Discussion 32 OsbHLH068 confers salt tolerance as its homolog, AtbHLH112 32 The possible role of OsbHLH068 in GA flowering pathway 34 Divergent evolution of OsbHLH068 and AtbHLH112 in controlling flowering time 35 Conclusion 40 Chapter II. Overexpression OsbHLH068 increases root elongation and delays flowering time in rice Introduction 41 Plant bHLH transcription factor family 41 The role of bHLHs in root architecture 41 Flowering time control in rice 42 Materials and Methods 45 Plant materials and growth conditions 45 RNA extraction and cDNA synthesis 45 Transgene constructs 46 Quantitative PCR (qPCR) 46 Results 47 Overexpression of OsbHLH068 promotes primary root growth in rice 47 OsbHLH068 delays flowering time 47 Discussion 49 OsbHLH068 delays flowering 49 OsbHLH068 promotes root elongation 51 OsbHLH068 and AtbHLH112 oppositely control flowering time 51 Conclusion 55 Conclusions and Perspectives 56 References 57 Appendix. Transgenes construction and mutant screening of OsbHLH061 Introduction 102 Materials and Methods 103 Plant materials and growth conditions 103 Transgene constructs 103 Spatiotemporal gene expression 104 Results 105 OsbHLH061 is up-regulated by drought and salt treatments 105 The spatiotemporal expression of OsbHLH061 105 Conclusions 107 | |
dc.language.iso | en | |
dc.title | 同源基因OsbHLH068和AtbHLH112參與阿拉伯芥鹽逆境耐受性及調控開花之研究 | zh_TW |
dc.title | Studies of Homologous Genes, OsbHLH068 and AtbHLH112, on Salt Tolerance and Flowering Regulation in Arabidopsis | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 侯新龍(Shin-Lon Ho),鄭萬興(Wan-Hsing Cheng),洪傳揚(Chwan-Yang Hong),蔡育彰(Yu-Chang Tsai) | |
dc.subject.keyword | 轉錄因子,bHLH,鹽逆境,開花, | zh_TW |
dc.subject.keyword | Transcription factor,OsbHLH068,AtbHLH112,Salt stress,Flowering, | en |
dc.relation.page | 107 | |
dc.identifier.doi | 10.6342/NTU201601161 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。