請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍 | |
| dc.contributor.author | Hsuan-Ju Tsai | en |
| dc.contributor.author | 蔡璿如 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:10:39Z | - |
| dc.date.available | 2019-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-15 | |
| dc.identifier.citation | 林柏均 (2014) 印度梨型孢真菌可增進水稻生長及鹽分/乾旱逆境之耐受性。國立臺灣大學生物資源暨農學院系碩士論文。
Achatz B, Kogel KH, Franken P, Waller F (2010) Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signal Behav 5:1685-1687. Achatz B, von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH, Franken P, Waller F (2010) Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 333:59-70. Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH (2013) A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol Biosyst 9:1498-1510. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399. Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227-1338. Arora P, Bhardwaj R, Kanwar MK (2010) 24-Epibrassinolide regulated diminution of Cr metal toxicity in Brassica juncea L. plants. Braz J Plant Physiol 22:159-165. Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V (2014) Effects of Piriformospora indica on biochemical parameters of Oryza sativa under salt stress. Int J Biosci 4:24-32. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501-510. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276-287. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179-194. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210-216. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316-328. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450-18457. Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna uniguiculata. Physiol Plant 117:237-244. Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373-379. Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 166:482-487. Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Salekdeh GH (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics 94:289-301. Grant OM, Chaves MM, Jones HG (2006) Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions. Physiol Plant 127:507-518. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1-10. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189-198. Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520-534. Hill TW, Kaefer E (2001) Improved protocols for Aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet Newsl 48:20-21. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987-12992. Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8:e26891. Johnson JM, Oelmüller R (2009) Mutualism or parasitism: life in an unstable continuum. What can we learn from the mutualistic interaction between Piriformospora indica and Arabidopsis thaliana? - Review. Endocyt Cell Res 19:81-111. Kao CH (2014) Role of L-ascorbic acid in rice plants. Crop Environ Bioinfo 12:1-7. Kao CH (2015) Role of glutathione in abiotic stress tolerance of rice plants. J Taiwan Agric Res 64:167-176. Kato M, Shimizu S (1985) Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol 26:1291-1301. Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, von Wettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS ONE 7:e35502. Kocsy G, Kobrehel K, Szalai G, Duviau MP, Buzás Z, Galiba G (2004) Abiotic stress- induced changes in glutathione and thioredoxin h levels in maize. Environ Exp Bot 52:101-112. Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358-363. Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723-725. Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780-790. Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat. Biochem J 210:899-903. Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, Oelmüller R, Yeh KW (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe In 24:421-431. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69-76. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453-467. Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3-19. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880. Ngara R, Ndimba BK (2014) Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 14:611-621. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integ Plant Biol 52:195-204. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249-279. Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front in Plant Sci 5:86. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 6:763-775. Peškan-Berghöfer T, Vilches-Barro A, Müller TM, Glawischnig E, Reichelt M, Gershenzon J, Rausch T (2015) Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytol 208:873-886. Potters G, Horemans N, Jansen MA (2010) The cellular redox state in plant stress biology--A charging concept. Plant Physiol Biochem 48:292-300. Prajapati K, Yami K, Singh A (2008) Plant growth promotional effect of Azotobacter chroococcum, Piriformospora indica and vermicompost on rice plant. Nepal J Sci Technol 9:85-90. Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585-600. Qiang X, Zechmann B, Reitz MU, Kogel KH, Schäfer P (2012) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death. Plant Cell 24:794-809. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189-1202. Rouhier N, Jacquot JP (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738-741. Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319-325. Schäfer P, Pfiffi S, Voll LM., Zajic D, Chandler PM., Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel K (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461-474. Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1-13. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241-26247. Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Int 21:799-807. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175-191. Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36:970-977. Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581-589. Smith IK, Kendall AC, Keys AJ, Turner JC, Lea PJ (1985) The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.). Plant Sci 41:11-17. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009-1017. Takahashi S, Badger MR (2010) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53-60. Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Int 21:1371-1383. Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263-1274. Varma A, Verma S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741-2744. Verma S, Verma A, Rexer KH, Hasse A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896-903. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386-13391. Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400-409. Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675-686. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532-26544. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48872 | - |
| dc.description.abstract | 印度梨形孢真菌(Piriformospora indica, P. indica)為可促進植物生長的根部內共生真菌,益生菌根真菌對植物生長的助益包括促進植物養分利用效率及提升植物對生物性及非生物性逆境之耐受性。隨著全球氣候變遷增加了旱災發生之機率,連帶對於糧食生產造成衝擊,在水稻栽培過程中需要大量灌溉用水,如何在水資源有限的情況下,維持水稻的正常生產,成為了一個重要的挑戰。本研究針對水稻品種臺農六十七號(Oryza sativa L. cv. Tainung 67, TNG67),探討其與P. indica共生後對水稻生長發育的影響以及乾旱逆境耐受性之改變。根據結果顯示,與對照組相比,接種P. indica的水稻植株抽穗時間將提前約4天,平均每株穗數亦較對照組提升,進而增加每株水稻之平均榖粒重,顯示P. indica具有提升水稻產量之潛力。以Polyethylene Glycol處理模擬乾旱逆境的試驗中,P. indica可維持水稻幼苗地上部及地下部較佳之生長勢,降低葉片的傷害指數,保有較佳的光合作用效率。此外,與P. indica共生之水稻在遭遇乾旱逆境後,能較快速的關閉氣孔,推測P. indica快速誘導氣孔關閉減少水分散失可能是P. indica協助水稻提升耐旱性的機制之一。丙二醛 (malondialdehyde)含量為氧化逆境指標之一,試驗結果顯示P. indica可降低乾旱逆境下葉部及地下部的丙二醛累積,並且透過提升抗氧化酵素活性及抗氧化物質含量,清除逆境下生成的活性氧化物 (reactive oxygen species, ROS),故推論強化植株的抗氧化能力為P. indica提升水稻乾旱逆境耐受性的調控機制之一。 | zh_TW |
| dc.description.abstract | Piriformospora indica (P. indica) is a mutualistic plant root endophytic fungus which is beneficial to host-plant growth; in some case, endophyte can also help to improve environmental stress tolerance of plants. Drought is one of the major environmental stresses on crop production in worldwide, and water scarcity undoubtedly is a limiting factor for rice production. In our study, we focused on the effect of P. indica on rice (Oryza sativa L. cv. Tainung 67, TNG67) growth and drought stress tolerance. The results showed that the heading date of P. indica-colonized rice plants was 4 days earlier than that of non-colonized rice. The number of pancicels and grain yield were also improved by P. indica. To evaluate the P. indica effect on the improvement of drought tolerance of rice plants, seedlings were exposed to polyethylene glycol (PEG) to mimic drought stress (-1 MPa). P. indica-colonized rice maintained higher biomass of both root and shoot tissues compared with non-colonized rice under drought stress condition. P. indica also reduced the levels of leaf damage caused by PEG treatment and maintained better photosynthesis efficiency. Furthermore, P. indica promoted the rapid stomatal closure under drought. Using malondialdehyde (MDA) as a biomarker to monitor the level of oxidative stresses, the results showed P. indica reduced MDA accumulations which induced by drought stresses in leaves and roots. Activities of several antioxidant enzymes were up-regulated and GSH/GSSG ratio was increased in P. indica-colonized rice seedlings under drought stress. It was suggested that P. indica colonization improve drought stress tolerance of rice plants was mediated reducing oxidative stress status. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:39Z (GMT). No. of bitstreams: 1 ntu-105-R02621113-1.pdf: 2148398 bytes, checksum: 0d7734140d7d03ebc9b189f405b4102b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
中文摘要……………………………………………………………………………….i Abstract………...…………………………………………………………………...…ii 目錄….………...…………………………………………………………………...…iii 圖目錄….………...………………………………………………………………....…v 附表及附圖目錄…...……………………………………………………………..…..vi 縮寫字對照…...……………………………………………………………...…...….vii 前言 1 1. 內生菌根菌與植物間之互利共生 1 2. 印度梨形孢真菌 2 3. 印度梨形孢真菌對植物生長之影響 2 4. 植物面對乾旱逆境之生理反應 4 5. 印度梨形孢真菌提升植物非生物性逆境耐受性之能力 5 6. 印度梨形孢真菌在水稻中之研究 6 7. 本論文之研究主題 7 材料與方法 8 1. 試驗材料 8 2. Piriformospora indica之培養 8 2.1. Piriformospora indica繼代培養 8 2.2. Piriformospora indica液態培養 8 3. 水稻與Piriformospora indica共培養 8 3.1. 接種P. indica方法 8 3.2. 水稻土耕栽培 9 4. 水稻產量分析 9 5. 水稻幼苗期乾旱逆境處理及生長分析 9 5.1. 葉片傷害程度分級 9 5.2. 葉綠素螢光測定 9 5.3. 氣孔反應分析 10 5.4. 葉片溫度分析 10 6. 生理分析 10 6.1. Malondialdehyde (MDA)測定 10 6.2. 抗氧化酵素活性測定 11 6.2.1. 蛋白質定量 11 6.2.2. Superoxide dismutase (SOD) 活性分析 11 6.2.3. Catalase (CAT) 活性分析 11 6.2.4. Ascorbate peroxidase (APX) 活性分析 12 6.2.5. Glutathione reductase (GR) 活性分析 12 6.3. Ascorbate及Dehydroascorbate含量測定 12 6.4. Glutatione含量測定 13 結果 14 1. 印度梨形孢真菌對於水稻產量之影響 14 2. 印度梨形孢真菌促進水稻乾旱逆境耐受性之影響 14 3. 印度梨形孢真菌對於水稻在乾旱逆境下氣孔行為之影響 15 4. 印度梨形孢真菌對於水稻在乾旱逆境下抗氧化能力之影響 16 討論 18 1. 印度梨形孢真菌提升水稻產量之探討 18 2. 印度梨形孢真菌對水稻乾旱逆境耐受性之影響 18 3. 印度梨形孢真菌對水稻在乾旱逆境下氣孔反應之影響 19 4. 印度梨形孢真菌提升水稻在乾旱逆境下抗氧化能力之影響 20 5. 結語與未來展望 23 參考文獻 36 圖目錄 圖一、印度梨形孢真菌對水稻生殖生長期之影響……………..............................24 圖二、印度梨形孢真菌對水稻分蘗及產量之影響..................................................25 圖三、印度梨形孢真菌對水稻乾旱逆境下生長之影響..........................................26 圖四、印度梨形孢真菌對水稻乾旱逆境下葉片傷害之影響………………..……27 圖五、印度梨形孢真菌對水稻乾旱逆境下最大螢光參數之影響………………..28 圖六、印度梨形孢真菌對水稻乾旱逆境下氣孔反應之影響……………………29 圖七、印度梨形孢真菌對水稻乾旱逆境下葉片溫度之影響..............................…30 圖八、印度梨形孢真菌對水稻乾旱逆境下MDA含量之影響............................…31 圖九、印度梨形孢真菌對水稻乾旱逆境下ascorbate含量之影響.........................32 圖十、印度梨形孢真菌對水稻乾旱逆境下glutathione含量之影響..................…33 圖十一、印度梨形孢真菌對水稻乾旱逆境下抗氧化酵素活性之影響..............…34 圖十二、P. indica 協助水稻提升乾旱逆境耐受性之生理機制..............…………35 附表及附圖目錄 附表一、Kaefer Medium配方.....................................................................................45 附表二、木村式水耕液配方.......................................................................................46 附表三、水稻肥料施加表………………………………………..………………….47 附圖一、ROS清除機制...............................................................................................48附圖二、脫水逆境下印度梨形孢對台中在來一號秈稻之影響……………………49 附圖三、脫水逆境下印度梨形孢真菌對台農六十七號梗稻之影響………………50 附圖四、氣孔開合狀態………………………………………………………………51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氧化逆境 | zh_TW |
| dc.subject | 水稻 (Oryza sativa L.) | zh_TW |
| dc.subject | 印度梨形孢真菌 (Piriformospora indica) | zh_TW |
| dc.subject | 乾旱逆境 | zh_TW |
| dc.subject | 氣孔 | zh_TW |
| dc.subject | drought stress | en |
| dc.subject | oxidative stress | en |
| dc.subject | stomata | en |
| dc.subject | rice (Oryza sativa L.) | en |
| dc.subject | Piriformospora indica | en |
| dc.title | 探討印度梨形孢真菌增強水稻耐乾旱逆境能力之生理機制 | zh_TW |
| dc.title | Study on the Physiological Mechanism of Piriformospora indica Improves Drought Stress Tolerance in Rice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張孟基,葉開溫,鄭秋萍,劉啟德 | |
| dc.subject.keyword | 水稻 (Oryza sativa L.),印度梨形孢真菌 (Piriformospora indica),乾旱逆境,氣孔,氧化逆境, | zh_TW |
| dc.subject.keyword | rice (Oryza sativa L.),Piriformospora indica,drought stress,stomata,oxidative stress, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201602572 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
