請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施文彬(Wen-Pin Shih) | |
| dc.contributor.author | Pin-Chun Huang | en |
| dc.contributor.author | 黃品淳 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:10:38Z | - |
| dc.date.available | 2022-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | [1] S. Mohanty, “Liquid crystals — the ‘fourth’ phase of matter,” Resonance, vol. 8, pp. 52–70, 2003.
[2] V. Freedericksz and A. Repiewa, “Theoretisches und Experimentalles zur Frage nach der Natur der anisotropen Flussigkeiten,” Physik. Zeitschr., vol. 42, pp. 532-546, 1927. [3] V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Fardday Soc., vol. 29, pp. 919-928, 1933. [4] H. Kawamoto, “The history of liquid-crystal displays,” P. IEEE, vol. 90, pp. 460–500, 2002. [5] G. W. Gray and S.M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem., vol. 9, pp. 2037–2050, 1999. [6] M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci., vol. 27, pp. 305–379, 1997. [7] J. W. Goodby, “The nanoscale engineering of nematic liquid crystals for displays,” Liq. Cryst., vol. 38, pp. 1363–1387, 2011. [8] Y.-K. Kim, B. Senyuk, and O.D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. commun., vol. 3, pp. 1133-1139, 2012. [9] M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett., vol. 85, pp. 2691-2693, 2004. [10] K. B. Lim, C. H. Lee, N. W. Sung, and S. H. Lee, “An experimental study on the characteristics of heat transfer on the turbulent round impingement jet according to the inclined angle of convex surface using the liquid crystal transient method,” Exp. Therm. Fluid Sci., vol. 31, pp. 711-719, 2007. [11] T. R. Wolinski, W. Konopka, W. J. Bock, and R. S. Dabrowski, “Progress in liquid crystalline optical fiber systems for pressure monitoring,” in Proc. Liquid Crystals: Physics, Technology, and Applications. Zakopane, Poland, Mar. 03-08, SPIE 3318, 338 (1997). [12] R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science, vol. 293, pp. 1296–1299, 2001. [13] P. H. Wang, J. H. Yu, Y. B. Zhao, Z. J. Li, and G. Q. Li, “A novel liquid crystal-based sensor for the real-time identification of organophosphonate vapors,” Sens. Actuators B., vol. 160, pp. 929–935, 2011. [14] R. R. Shah and N. L. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir, vol. 19, pp. 275–284, 2003. [15] X. Bi and K. L. Yang, “Real-time liquid crystal-based glutaraldehyde sensor,” Sens. Actuators B., vol. 134, pp. 432–437, 2008. [16] V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science, vol. 279, pp. 2077–2080, 1998. [17] J. J. Skaife and N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir, vol. 16, pp. 3529–3536, 2000. [18] M. Nakata, G. Zanchetta, M. Buscaglia, T. Bellini, and N. A. Clark, “Liquid crystal alignment on a chiral surface: interfacial interaction with sheared DNA films,” Langmuir, vol. 24, pp. 10390–10394, 2008. [19] C. H. Chen and K. L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir, vol. 26, pp. 1427–1430, 2010. [20] S. L. Lai, W. L. Tan, and K. L. Yang, “Detection of DNA Targets Hybridized to Solid Surfaces Using Optical Images of Liquid Crystals,” ACS Appl. Mater. Interfaces, vol. 3, pp. 3389–3395, 2011. [21] L. A. T. Espinoza, K. R. Schumann, Y. Y. Luk, B. A. Israel, and N. L. Abbott, “Orientational behavior of thermotropic liquid crystals on surfaces presenting electrostatically bound vesicular stomatitis virus,” Langmuir, vol. 20, pp. 2375–2385, 2004. [22] C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic liquid crystals on viruses with different envelope structures,” Nano Lett., vol. 6, pp. 1053–1058, 2006. [23] S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Adv. Funct. Mater., vol. 19, pp. 2260–2265, 2009. [24] akanishi, T. Takahashi, H. Mada, and S. Saito, “Transient Behavior of Voltage Holding Ratio in Nematic Liquid Crystal Cells (Optics and Quantum Electronics),” Jpn. J. Appl. Phys., vol. 41, pp. 3752-3757, 2002. [25] N. Sasaki, “Simulation of the voltage holding ratio in liquid crystal displays with a constant charge model,” Jpn. J. Appl. Phys., vol. 37, pp. 6065-6070, 1998. [26] M. Costa, R. Altafim, and A. Mammana, “Ionic impurities in nematic liquid crystal displays,” Liq. Cryst., vol. 28, pp. 1779-1783, 2001. [27] W. Lee, C. Wang, and Y. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett., vol. 85, pp. 513-515, 2004. [28] Y. Chen, J. Wu, and H. Ke, “The Transverse motions of charged nano-particles under an AC electric field in a nematic liquid crystal cell,” Jpn. J. Appl. Phys., vol. 47, pp. 8631-8634, 2008. [29] Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett., vol. 82, pp. 1917-1919, 2003. [30] V. Y. Reshetnyak, S. M. Shelestiuk, T. J. Sluckin, “Fredericksz transition threshold in nematic liquid crystals filled with ferroelectric nano-particles,” Mol. Cryst. Liq. Cryst., vol. 454, pp. 201-206, 2003. [31] P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science, vol. 275, pp. 1770-1773, 1997. [32] D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E, vol. 65, 060701, 2002. [33] D. Pires, J. B. Fleury, and Y. Galerne, “Colloid particles in the interaction field of a disclination line in a nematic phase,” Phys. Rev. Lett., vol. 98, 247801, 2007. [34] Z. M. Sun, J. Y. Fang, N. B. Ming, and X. W. Tang, “Motion of Suspended Particles in a Nematic Liquid Crystal,” Phys. Lett. A, Vol. 145, No. 5, pp. 284-286, 1990. [35] G. M. Koenig, R. Ong, A. D. Cortes, J. A. Moreno-Razo, J. J. de Pablo, and N. L. Abbott, “Single Nanoparticle Tracking Reveals Influence of Chemical Functionality of Nanoparticles on Local Ordering of Liquid Crystals and Nanoparticle Diffusion Coefficients,” Nano Lett., Vol. 9, No. 7, pp. 2794-2801, 2009. [36] T. Turiv, I. Lazo, A. Brodin, B. I. Lev, V. Reiffenrath, V. G. Nazarenko, and O. D. Lavrentovich, “Effect of Collective Molecular Reorientations on Brownian Motion of Colloids in Nematic Liquid Crystal,” Science, Vol. 342, No. 6164, pp. 1351-1354, 2013. [37] X. L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-dimensional bacterial bath,” Phys. Rev. Lett., vol. 84, pp. 3017-3020, 2000. [38] X. L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-dimensional bacterial bath,” Phys. Rev. Lett., vol. 86, pp. 557-557, 2001. [39] M. Pumpa and F. Cichos, “Slow single-molecule diffusion in liquid crystals,” J. Phys. Chem. B, vol. 116, pp. 14487-14493, 2012. [40] A. K. Srivastava, S. J. Jeong, M. H. Lee, S. H. Leea, S. H. Jeong, and Y. H. Lee, “Dielectrophoresis Force Driven Dynamics of Carbon Nanotubes in Liquid Crystal Medium,” Journal of Applied Physics, Vol. 102, No. 4, 043503, 2007. [41] I. S. Baik, S. Y. Jeon, S. H. Lee, K. A. Park, S. H. Jeong, K. H. An, and Y. H. Lee, “Electrical-Field Effect on Carbon Nanotubes in a Twisted Nematic Liquid Crystal Cell,” Physical Review Letters, Vol. 87, No. 26, 263110, 2005. [42] A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and Electrophoretic Force Analysis of Colloidal Fullerenes in a Nematic Liquid-Crystal Medium,” Physical Review E, Vol. 80, No. 5, 051702, 2009. [43] S. Hernandez-Navarro, P. Tierno, J. Ignes-Mullol, and F. Sagues, “AC Electrophoresis of Microdroplets in Anisotropic Liquid: Transport, Assembling and Reaction,” Soft Matter, Vol. 9, No. 33, pp. 7999-8004, 2013. [44] F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem., vol. 9, pp. 421-441, 1888. [45] F. Reinitzer, “Contributions to the knowledge of cholesterol,” Translation of Reference [44]. Liq. Cryst., vol. 5, pp. 7-18, 1989. [46] O. Lehmann, “Über fliessende Krystalle,” Zeitschrift für Physikalische Chemie, vol. 4, pp. 462-472, 1889. [47] D. Vorlander, “Einfluß der molekularen Gestalt auf den krystallinischflüssigen Zustand,” Ber. Deutsch. Chem. Ges., vol. 40, pp. 1970-1972, 1907. [48] G. Friedel, “Les états mésomorphes de la matière,” Ann. Phys. (Paris), vol. 18, pp. 273-474, 1922. [49] P. Collings and M. Hird, Introduction to liquid crystals, Taylor & Francis, 1997. [50] L. Gattermann and A. Ritschke, “Uber azoxyphenolather,” Ber. Deutsch. Chem. Ges., vol. 23, pp. 1738-1750, 1890. [51] H. Keller and B. Scheurle, “A Liquid-crystalline (nematic) phase with a particularly low solidification point,” Angew. Chem. Internat. Edit., vol. 8, pp. 884-885, 1969. [52] G. W. Gray, K. J. Harrison and J. A. Nash, “New family of nematic liquid crystals for display,” Electron. Lett., vol. 9, pp. 130-131, 1973. [53] Cooper J. “Compositional analysis of Merck E7 liquid crystals intermediates using UltraPerformance Convergence Chromatography (UPC2) with PDA detection. “ Waters Application Note 720004814en. Date 2013 Oct. [54] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd Edition, Clarendon Press, Oxford, 1993. [55] C. Marcos, J. M. S. Pena, J. C. Torres, and J. I. Santos, “Temperature-frequency converter using a liquid crystal cell as a sensing element,” Sensors, vol. 12, pp. 3204-3214, 2012. [56] F. C. Frank,, “I. Liquid crystals. On the theory of liquid crystals” Disc. Faraday Soc., vol. 25, pp. 19-28, 1958. [57] S. Kaur, H. Liu, J. Addis, C. Greco, A. Ferrarini, V. Gortz, J. W. Goodby, and H. F. Gleeson, “The influence of structure on the elastic, optical and dielectric properties of nematic phases formed from bent-core molecules,” J. Mater. Chem. C, vol. 1, pp. 6667-6676, 2013. [58] P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon press, Oxford, pp. 109-110 (1993). [59] J. L. Lanning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett., vol. 21, 173, 1972. [60] V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech House Publishers, April 1999. [61] M. Miesowicz, “The three coefficients of viscosity of anisotropic liquids,” Nature, vol. 158, pp. 27, 1946. [62] B. Senyuk, O. Puls, O. M. Tovkach, S. B. Chernyshuk, and I. I. Smalyukh, “Hexadecapolar colloids,” Nat. Commun., vol. 7, 10659, 2016. [63] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering, World Scientific, Singapore, pp. 413 (1996). [64] A. Einstein, “Investigations on the theory of the Brownian movement,” Ann. Phys. (Leipzig), vol. 17, pp. 549, 1905. [65] O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Physical Review Letters, Vol. 99, No. 12, 127802, 2007. [66] V. M. Pergamenshchik and V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: The mirror-image method of colloidal nematostatics,” Phys. Rev. E, vol. 79, 021704, 2009. [67] S. B. Chernyshuk and B. I. Lev, “Theory of elastic interaction of colloidal particles in nematic liquid crystals near one wall and in the nematic cell,” Phys. Rev. E, vol. 84, 011707, 2011. [68] I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, S Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science, vol. 313, pp. 954-958, 2006. [69] M. Skarabot, Z. Lokar, I. Musevic, “Transport of particles by a thermally induced gradient of the order parameter in nematic liquid crystals,” Phys. Rev. E, vol. 87, 062501, 2013. [70] M. Lynch and D. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Lett., vol. 2, pp. 1197-1202, 2002. [71] I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater., vol. 16, pp. 865-869, 2004. [72] M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari, “Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions,” Adv. Colloid Interfac., vol. 152, pp. 48-88, 2009. [73] C. L. Zhao and C. Yang, “Advances in electrokinetics and their applications in micro/nano fluidics,” Microfluid. Nanofluid., vol. 13, pp. 179-203, 2012. [74] I. Dierking, G. Biddulph, and K. Matthews, “Electromigration of microspheres in nematic liquid crystals,” Phys. Rev. E, vol. 73, 011702, 2006. [75] H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett., vol. 90 (3), 033510, 2007. [76] M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D-Appl. Phys., vol. 42, 063001, 2009. [77] C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett., vol. 64, pp. 466-468, 2010. [78] J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science, vol. 306, pp. 1525, 2007. [79] S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano, vol. 2, pp. 41-49, 2007. [80] L. N. Lisetski, N. I. Lebovka, S. V. Naydenov, and M. S. Soskin, “Dispersions of multi-walled carbon nanotubes in liquid crystals: A physical picture of aggregation,” J. Mol. Liq., vol. 164, pp. 143-147, 2011. [81] S. Schymura and G. Scalia, “On the effect of carbon nanotubes on properties of liquid crystals,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., vol. 371, 20120261, 2013. [82] Y.-T. Lai, Y.-M. Chen, T. Liu, and Y.-J. Yang, “A tactile sensing array with tunable sensing ranges using liquid crystal and carbon nanotubes composites,” Sens. Actuator A-Phys., vol. 177, pp. 48-53, 2012. [83] K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C, vol. 111, pp. 1620–1624, 2007. [84] D. A. Dunmur, A. Fukuda, and G. R. Luckhurst, Physical properties of liquid crystals: nematics, INSPEC, The Institution of Electrical Engineers, London, p.444 (2011). [85] H. Y. Wang, T. X. Wu, S. Gauza, J. R. Wu, and S. T. Wu, “A method to estimate the Leslie coefficients of liquid crystals based on MBBA data,” Liq. Cryst., vol. 33, pp. 91-98, 2006. [86] I. S. Baik, S. Y. Jeon, S. J. Jeong, S. H. Lee, K. H. An, S. H. Jeong, and Y. H. Lee, “Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field,” J. Appl. Phys., vol. 100, 074306, 2006. [87] M. Cestari, A. Bosco, and A. Ferrarini, “Molecular field theory with atomistic modeling for the curvature elasticity of nematic liquid crystals,” J. Chem. Phys., vol. 131, 054104, 2009. [88] R. W. Ruhwandl and E. M. Terentjev, “Friction drag on a particle moving in a nematic liquid crystal,” Phys. Rev. E, vol. 54, 5204, 1996. [89] A. J. Chung, D. Kim, and D. Erickson, “Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems,” Lab Chip, vol. 8, pp. 330-338, 2008. [90] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications,” Science, vol. 297, pp. 787-792, 2002. [91] T. Takahashi, S. Saito, and Y. Toko, “A novel type of display for electronic paper using fine particles dispersed in nematic liquid crystal,” Jpn. J. Appl. Phys., vol. 43, pp. 7181-7186, 2004. [92] L. L. Shui, R. A. Hayes, M. L. Jin, X. Zhang, P. F. Bai, A. van den Berg, and G. F. Zhou, “Microfluidics for electronic paper-like displays,” Lab Chip, vol. 14, pp. 2374-2384, 2014. [93] F. Mondiot, J. C. Loudet, O. Mondain-Monval, P. Snabre, A. Vilquin, and A. Wurger, “Stokes-Einstein diffusion of colloids in nematics,” Phys. Rev. E, vol. 86, No. 1, Part 1, 2012. [94] B. Senyuk, and I. I. Smalyukh, “Elastic interactions between colloidal microspheres and elongated convex and concave nanoprisms in nematic liquid crystals,” Soft Matter, vol. 8, pp. 8729-8734, 2012. [95] B. Senyuk, J. S. Evans, P. J. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett., vol. 12, pp. 955-963, 2012. [96] I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett., vol. 86, 021913, 2005. [97] A. V. Ryzhkova, F. V. Podgornov, A. Gaebler, R. Jakoby, and W. Haase, “Measurements of the electrokinetic forces on dielectric microparticles in nematic liquid crystals using optical trapping” J. Appl. Phys., vol. 113, 244902, 2013. [98] P. –C. Huang, and W. –P. Shih, “Angular velocity response of nanoparticles dispersed in liquid crystal,” Appl. Phys. Lett., vol. 102, 243510, 2013. [99] B. –R. Jian, C. –Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon, vol. 49, pp. 910-914, 2011. [100] K. Y. Lo, C. C. Shiah, and C. Y. Huang, “Actual capacitance function of nematic liquid crystal cell,” Jpn. J. Appl. Phys., vol. 45, pp. 891-895, 2006. [101] P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon press, Oxford, pp. 113-114, pp.225-226 (1993). [102] T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E, vol. 57, pp. 610-625, 1998. [103] H. Stark, and D. Ventzki, “Stokes drag of spherical particles in a nematic environment at low ericksen numbers,” Phys. Rev. E, vol. 64, 031711, 2001. [104] I. W. Stewart, the Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, pp. 22-23 (2004). [105] O. D. Lavrentovich, “Transport of particles in liquid crystals,” Soft Matter, Vol. 10, No. 9, pp. 1264-1283, 2014. [106] J. C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature, vol. 407, pp. 611-613, 2000. [107] R. –P. Pan, H. –Y. Wu, and C. –F. Hsieh, “Liquid crystal surface alignments by using films composed of magnetic nanoparticles,” in Proc. Emerging Liquid Crystal Technologies III, San Jose, U.S.A., Jan. 20-22, SPIE 6911, 691104 (2008). [108] V. G. Nazarenko and O. D. Lavrentovich, “Anchoring transition in a nematic liquid crystal composed of centrosymmetric molecules,” Phys. Rev. E, vol. 49, pp. R990-R993, 1994. [109] V. G. Nazarenko, V. M. Pergamenshchik, O. Koval'Chuk, and B. I. Lev, “Non-debye charge screening and adsorbed-ion-induced anchoring transition in a nematic liquid crystal,” Mol. Cryst. Liq. Cryst., vol. 352, pp. 435-442, 2000. [110] G. Barbero, A. K. Zvezdin, and L. R. Evangelista, “Ionic adsorption and equilibrium distribution of charges in a nematic cell,” Phys. Rev. E, vol. 59, pp. 1846-1849, 1999. [111] R. J. Carlton, J. K. Gupta, C. L. Swift, and N. L. Abbott, “Influence of simple electrolytes on the orientational ordering of thermotropic liquid crystals at aqueous interfaces,” Langmuir, vol. 28, pp. 31-36, 2012. [112] W. S. Koo, H. K. Chung, H. G. Park, J. J. Han, H. C. Jeong, M. J. Cho, D. H. Kim, and D. S. Seo, “Enhanced switching behavior of iron oxide nanoparticle-doped liquid-crystal display,” J. Nanosci. Nanotechno., vol. 14, pp. 8609-8614, 2014. [113] J. Wang, L. Wang, Y. Zeng, Y. Q. Fang, Q. Zhang, and Y. H. Wang, “A study of the transition of liquid-crystal alignment from homeotropic to planar on a polyimide layer,” Liq. Chryst., vol. 37, pp. 271-278, 2010. [114] A. B. Marahatta, M. Kanno, K. Hoki, W. Setaka, S. Irle, and H. Kono, “Theoretical investigation of the structures and dynamics of crystalline molecular gyroscopes,” J. Phys. Chem. C, vol. 116, pp. 24845-24854, 2012. [115] L. Meirovitch, Analytical Methods in Vibrations, New York: Macmillan Publishing Co., 1967. [116] F. M. Leslie, “Theory of flow phenomena in liquid crystals,” Adv. Liq. Cryst., vol. 4, pp. 1–81, 1979. [117] W. R. Burghardt, and G. G. Fuller, “Transient shear flow of nematic liquid crystals: manifestations of director tumbling,” J. Rheol., vol. 34, pp. 959, 1990. [118] A. P. Krekhov and L. Kramer, “Flow-alignment instability and slow director oscillations in nematic liquid crystals under oscillatory flow,” Phys. Rev. E, vol. 53, pp. 4925-4932, 1996. [119] W. R. Burghardt, “Oscillatory shear flow of nematic liquid crystals,” J. Rheol., vol. 35, pp. 49-62, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48871 | - |
| dc.description.abstract | 本論文主要在討論奈米物質混液晶的角速度響應,並且試著探討液晶陀螺儀之理論基礎。液晶材料本身具有液體的流動性,同時兼具了類似晶體的分子方向秩序,這樣的特性使液晶具有物理非等向性,由於液晶分子可簡單經由外力場改變其方向,如電磁場、壓力、溫度梯度等,因此被廣泛運用在各種感測器上,以及與我們生活最貼近的液晶面板,因應發展所需,越來越多研究開始關注其他物質混入液晶的特性,大多數致力於靜態的物理特性改善,但是由於非等向性流體本身的流動較一般流體複雜許多,研究其他物質混入液晶之後的動態更顯重要。本實驗研究的奈米物質以常見的奈米碳管與奈米鐵粉為主,此兩種不同密度但是體積相近的顆粒在受到角速度產生的離心力影響後,分別在不同的臨界角速度下開始使奈米物質混液晶的電容值產生變化,這說明了兩件事,第一是物體顆粒要在液晶材料裡運動之前,必須先克服一束縛力,第二是在同大小的物體所受的束縛力幾乎是相同的,為了探討其束縛力的成因,我們做了改變奈米物質混液晶溫度的實驗,實驗結果顯示較高溫的樣品比低溫的樣品除了減少了束縛力,也增加了電容值變化的幅度,由於先前的研究顯示溫度會改變液晶的彈力常數與黏滯係數,因此束縛力與電容值改變的幅度與液晶的彈力常數與黏滯係數有關。為了再詳細探討微觀中的物理特性,我們將物體顆粒運動時對液晶方向秩序破壞的因素加以探討,結果發現當物體顆粒的半徑大於某一特徵長度時,物體顆粒與液晶之間表面能的改變量應小於液晶的彈力能變化量,以滿足能量最小化。在垂直兩偏振片中觀察奈米鐵粉於液晶裡的運動後我們發現,奈米鐵粉的運動會對周圍的液晶產生角度的變化,進而改變奈米物質混液晶的電容值,因此奈米鐵粉的移動速度越快,奈米物質混液晶的電容值改變量就越大,另外,奈米鐵粉的移動速度同時也與遲滯電容成正比,而隨著轉動的次數越多,越多奈米鐵粉集中在液晶盒的邊緣,造成臨界角速度增加與電容改變量下降,因此文章的第六章我們探討液晶陀螺儀的理論基礎,期望保有整體系統的重複性,然而結果發現液晶本身有黏彈特性,過阻尼的特性影響了可工作頻率範圍,而且高黏滯性也使得液晶分子角度變化不大,因此要實現液晶陀螺儀必須降低黏滯係數或是使旋轉黏滯係數接近流動黏滯係數,同時,增加彈力常數或是縮短液晶層厚度也能增加工作頻率範圍。 | zh_TW |
| dc.description.abstract | This dissertation focuses on the angular velocity response of nanoparticles dispersed in liquid crystal, and tries to investigate the theoretical foundation study of liquid crystal-based gyroscope. Liquid crystals can move freely like normal liquid, but
exhibit the orientational order, which makes liquid crystal as the anisotropic liquid. Owing to the orientation of liquid crystal molecules can simply alter by external field, e.g. electromagnet field, pressure and temperature gradient, liquid crystals have been widely used in many sensors, and popularly been used in display technology. Recently, a number of investigators have reported on the behavior of particles dispersed in this interesting material, most of them focus on the improvement of bulk properties of liquid crystals, since the hydrodynamics of liquid crystals is more complicated than isotropic fluid, it is worthy to investigate the dynamic of particles dispersed in liquid crystals. The nanoparticles we used are carbon nanotubes and Fe2O3 nanoparticles. When these two types of particles with similar volume experienced centrifugal force, the capacitance of liquid crystal cell started to change at different threshold angular velocities. This phenomenon indicates that, first, particles should overcome some trapping force before they move, second, the trapping forces exert on these two types of particles are almost the same. In order to investigate the trapping force in detail, we change the temperature of liquid crystal cell. The result indicated the trapping force was reduced as well as the difference capacitance was increased while raising the temperature of liquid crystal cell. Hence, the threshold angular velocity is related to the elastic constant. In microscope level, we found that, when the radius of particle is larger than Kleman-de Gennes length, the difference of surface energy between particle and liquid crystals should less than the difference of elastic energy. By observing the motion of particles in liquid crystal within cross-polarized light microscopy, we found that, the orientations of liquid crystal molecules were altered by the nearby motion of particles, so the faster the movement of particles is, the large difference capacitance we will get. Besides, the mobility of particles is in relation to the hysteresis capacitance, while particles are stack at the edge of liquid crystal cell, the threshold angular velocity increased and the difference capacitance decreased. In Chapter 6, the theoretical foundation study on liquid crystal-based gyroscope was being discussed; due to the verdamped system of liquid crystals, the range of working frequency is limited at low frequency, and the orientation of liquid crystal molecules driven by Coriolis force is slightly changed. In order to improve the working frequency and sensitivity, one should reduce viscosity coefficients or adjust rotational viscosity as close to translational viscosity as possible. In addition, while increasing elastic constant or reducing the thickness of liquid crystal layer, the working frequency of liquid crystal-based gyroscope could be raised. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:38Z (GMT). No. of bitstreams: 1 ntu-105-F98522516-1.pdf: 5544162 bytes, checksum: 5aacb1130c5fc175e829b8bf11fe3a8f (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iv Symbol Table vi Content x List of Figures xiiii List of Tables xix CHAPTER 1 Introduction 1 1.1 Preface 1 1.2 Motivation 3 1.3 Dissertation Organization 4 CHAPTER 2 Liquid Crystals 7 2.1 Discovery of liquid crystals 7 2.2 Basic description of liquid crystals 9 2.2.1 Nematic liquid crystals 10 2.2.2 Cholesteric liquid crystals 12 2.2.3 Smectic liquid crystals 14 2.3 Defining an order parameter of liquid crystals 15 2.3.1 Microscopic order parameters 15 2.3.2 Macroscopic order parameters 18 2.4 Physical properties of liquid crystals 20 2.4.1 Dielectric anisotropy 21 2.4.2 Elastic constant 24 2.4.3 Boundary effects 27 2.4.3.1 Homogeneous (planar) orientation 28 2.4.3.2 Homeotropic orientation 29 2.4.3.2 Surface energy 30 2.4.3.2 Bulk distortions on the surface 31 2.4.4 Viscosity anisotropic 35 2.4.4.1 Translational viscosity 36 2.4.4.2 Rotational viscosity 37 2.5 Summary 38 CHAPTER 3 Properties of Particles Dispersed in Nematic Liquid Crystals 40 3.1 Surface alignment in particle-nematic interface 40 3.2 Brownian motion of particles in liquid crystals 42 3.3 Levitation of particles in bounded liquid crystals 44 3.4 Particles attracted to the distortion 45 3.5 Order of anisotropic particles in liquid crystals 47 3.6 Transportation of particles in liquid crystal 48 3.6.1 Electrophoresis force 48 3.6.2 Dielectrophoresis force 50 3.7 Summary 52 CHAPTER 4 Angular Response of Particles Dispersed in Liquid Crystal 53 4.1 Introduction 53 4.2 Sample preparation 55 4.2.1 Guest-host materials 55 4.2.2 Pre-experiment 58 4.3 Experimental setup and measurements 61 4.3.1 Angular speed versus capacitance 61 4.3.2 Temperature dependence experiment 66 4.4 Summary 67 CHAPTER 5 Dynamics and Hysteresis of Particles Dispersed in Nematic Liquid Crystals Driven by Centrifugal Force 69 5.1 Introduction 69 5.2 Sample preparation 71 5.3 Angular velocity versus capacitance 72 5.3.1 Test setup 72 5.3.1 Force analysis 73 5.4 Hysteresis effect 83 5.5 Summary 87 CHAPTER 6 Theoretical Foundation Study of Liquid Crystal Gyroscope 88 6.1 Operational principle of vibratory gyroscope 88 6.2 Concept of liquid crystal gyroscope 90 6.3 Analysis of plane-inside liquid crystal gyroscope 92 6.3.1 Basic equation 93 6.3.2 Discussion 96 6.4 Summary 104 CHAPTER 7 Conclusions and Future Work 105 7.1 Conclusions 105 7.2 Future works 108 References 110 VITA 124 | |
| dc.language.iso | en | |
| dc.subject | 液晶陀螺儀 | zh_TW |
| dc.subject | 角速度響應 | zh_TW |
| dc.subject | 液晶 | zh_TW |
| dc.subject | 奈米物質 | zh_TW |
| dc.subject | 黏滯力 | zh_TW |
| dc.subject | viscosity force | en |
| dc.subject | liquid crystal-based gyroscope | en |
| dc.subject | nanoparticles | en |
| dc.subject | angular velocity response | en |
| dc.subject | liquid crystal | en |
| dc.title | 液晶混奈米高分子之角速度響應與液晶陀螺儀理論基礎之研究 | zh_TW |
| dc.title | Angular velocity response of nanoparticles dispersed in liquid crystal and the theoretical foundation study of liquid crystal-based gyroscope | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 戴慶良,施博仁,胡毓忠,蘇培珍,Yong-Jin Yoon(Yong-Jin Yoon) | |
| dc.subject.keyword | 液晶,角速度響應,奈米物質,黏滯力,液晶陀螺儀, | zh_TW |
| dc.subject.keyword | liquid crystal,angular velocity response,nanoparticles,viscosity force,liquid crystal-based gyroscope, | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU201601060 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
