Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48865
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘(Der-Ming Yeh)
dc.contributor.authorYu-Chun Liaoen
dc.contributor.author廖于鈞zh_TW
dc.date.accessioned2021-06-15T11:10:31Z-
dc.date.available2020-08-20
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation洪嘉樺. 2014. 花壇植物水分逆境耐受性之研究. 國立臺灣大學園藝學系碩士論文. 臺北.
洪嘉樺、葉德銘. 2015 介質體積含水量對夏秋季花壇植物生長與光合作用之影響. 臺灣園藝 61:263-280.
洪丞瑩. 2018. 繁星花之花粉發芽、花色遺傳及盆花選育. 國立臺灣大學園藝學系碩士論文. 臺北.
郭孟樺. 2012. 夏菫與毛葉蝴蝶草種間雜交胚之拯救與多倍體化. 國立臺灣大學園藝學系碩士論文. 臺北.
陳錦木、李窓明、葉德銘. 2011. 臺灣的花壇植物產業現況與展望. p154-167. 綠色城市與花卉產業國際研討會論文集. 國立臺灣大學園藝暨景觀學系編印, 臺北. 臺灣.
Adams, K.L. and J.P. Wendel. 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8:135-141.
Albach, D.C., H.M. Meudt, and B. Oxelman. 2005. Piecing together the “new” Plantaginaceae. Amer. J. Bot. 92:237-315.
Alexander, L. 2017. Production of triploid Hydrangea macrophylla via unreduced gamete breeding. HortScience 52:221-224.
Aleza, P., J. Juárez, J. Cuenca, P. Ollitrault, and L. Navarro. 2012. Extensive citrus triploid hybrid production by 2x × 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Rpt. 31:1723-1735.
Armitage, A.M., A.M. Miller, and J.M. Garner. 2000. The influence of photoperiod and temperature on growth and flowering of Angelonia angustifolia Benth. – a preliminary report. Acta Hort. 541:167-170.
Bailey, L.H. and E.Z. Bailey. 1976. Hortus Third. MacMillan, NY, USA.
Blakeslee, A.F. and A.G. Avery. 1937. Methods of inducing doubling of chromosomes in plants: By treatment with colchicine. J. Hered. 28:393-411.
Boldt, J.K. 2008. Cultural and environmental factors influence the performance of Angelonia angustifolia cultivars. Doctoral dissertation, University of Florida. USA.
Boutraa, T., A. Akhkha, A.A. Al-Shoaibi, and A.M. Alhejeli. 2010. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J. Taibah Univ. Sci. 3:39-48.
Bray, E.A. 2007. Molecular and physiological responses to water-deficit stress. Advances in molecular breeding toward drought and salt tolerant crops. p. 121-140. Springer. NY, USA.
Bretagnolle, F.A. and J.D. Thompson. 1995. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 129:1-22.
Cao, Q., X. Zhang, X. Gao, L. Wang, and G. Jia. 2018. Effects of ploidy level on the cellular, photochemical and photosynthetic characteristics in Lilium FO hybrids. Plant physiol. Biochem. 133:50-56.
Chen, L.P., Y.J. Wang, and M. Zhao. 2006. In vitro induction and characterization of tetraploid Lychnis senno Siebold et Zucc. HortScience 41:759-761.
Chen, Z.J. 2010. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 15:57-71.
Cohen, D. and J.L. Yao. 1996. In vitro chromosome doubling of nine Zantedeschia cultivars. Plant Cell Tiss. Org. Cult. 47:43-49.
Dhooghe, E., K. van Laere, T. Eeckhaut, L. Leus, and J.V. Huylenbroeck. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss. Org. Cult. 104:359-373.
Doležel, J., J. Greilhuber, and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2:2233-2244.
Dong, B., H. Wang, T. Liu, P. Cheng, Y. Chen, S. Chen, Z. Guan, J. Jiang, and T. Chen. 2017. Whole genome duplication enhances the photosynthetic capacity of Chrysanthemum nankingense. Mol. Genet. Genomics 292:1247-1256.
Feng, H., M.L. Wang, R.C. Cong, and S.L. Dai. 2017. Colchicine-and trifluralin-mediated polyploidization of Rosa multiflora Thunb. var. inermis and Rosa roxburghii f. normalis. J. Hort. Sci. Biotechnol. 92:279-287.
Gantait, S., N. Mandal, S. Bhattacharyya, and P.K. Das. 2011. Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella. Plant Cell Tiss. Org. Cult. 106:485-493.
Głowacka, K., S. Jeżowski, and Z. Kaczmarek. 2010. The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell. Tiss. Org. Cult. 102:79-86.
Grouh, M.S.H., H. Meftahizade, N. Lotfi, V. Rahimi, and B. Baniasadi. 2011. Doubling the chromosome number of Salvia hains using colchicine: Evaluation of morphological traits of recovered plants. J. Med. Plant Res. 5:4892-4898.
Guo, Y., T. Starman, and C. Hall. 2018. Reducing substrate moisture content (SMC) during greenhouse production and postproduction of angelonia and heliotrope improves crop quality and economic value. HortScience 53:1006-1011.
Haouala, R., S. Ouerghemmi, A. Tarchoune, and N. Boughanmi. 2009. Improvement of Trigonella maritima Delilee X. Poir. germination by polyploidization. Pak. J. Bot, 41:3001-3008.
Hassan, T. and R. Rehman. 2017. Polyploidy: Recent trends and future perspectives. Springer India, IN.
Hegarty M.J., G.L. Barker, A.C. Brennan, K.J. Edwards, R,J. Abbott, and S.J. Hiscock. 2008. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Phil. Trans R. Soc. B. 363:3055–3069.
Hsiao, T.C. and E. Acevedo. 1975. Plant responses to water deficits, water-use efficiency, and drought resistance. p. 59-84. In: J.F. Stone (eds.). Plant Modification for More Efficient Water Use. Elsevier, Amsterdam, NL.
Huang, R., D. Liu, M. Zhao, Z. Li, M. Li, and S. Sui. 2015. Artificially induced polyploidization in Lobularia maritima (L.) Desv. and its effect on morphological traits. HortScience 50:636-639.
Huxley, A. 1992. The new Royal Horticultural Society dictionary of gardening, vol 1. MacMillan, London. UK.
Jacobson, A.B., T.W. Starman, and L. Lombardini. 2015. Substrate moisture content effects on growth and shelf life of Angelonia angustifolia. HortScience 50:272-278.
Johnston, S.A., T.P.M. den Nijs, S.J. Peloquin, and R.E. Hanneman. 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57:5-9.
Kobayashi, N., S. Yamashita, K. Ohta, and T. Hosoki. 2008. Morphological characteristics and their inheritance in colchicine-induced Salvia polyploids. J. Jpn. Soc. Hort. Sci. 77:186-191.
Kushwah, K.S., R.C. Verma, S. Patel, and N.K. Jain. 2018. Colchicine induced polyploidy in Chrysanthemum carinatum L. J. Phylogenetics Evol. Biol. 6:1-4.
Levin, D.A. 2002. The role of chromosomal change in plant evolution. Oxford Univ. Press, Oxford, UK.
Li, R.H., P.G. Guo, B. Michael, G. Stefania, and C. Salvatore. 2006. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agr. Sci. China 5:751-757.
Li, W.D., D.K. Biswas, H. Xu, C.Q. Xu, X.Z. Wang, J.K. Liu, and G.M. Jiang. 2009. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct. Plant Biol. 36:783-792.
Li, Z. and J.M. Ruter. 2017. Development and evaluation of diploid and polyploid Hibiscus moscheutos. HortScience 52:676-681.
Liu, G., Z. Li., and M. Bao. 2007. Colchicine-induced chromosome doubling in Platanus × acerifolia and its effect on plant morphology. Euphytica 157:145-154
Luo, Z., B.J. Iaffaldano, and K. Cornish. 2018. Colchicine-induced polyploidy has the potential to improve rubber yield in Taraxacum kok-saghyz. Ind. Crop. Prod. 112:75-81.
Machado, I.C., A.V. Lopes, and M. Sazima. 2006. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest. Ann. Bot. 97:277-287.
Manzoor, A., T. Ahmad, M.A. Bashir, I.A. Hafiz, and C. Silvestri. 2019. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8:194-209.
Manzoor, A., T. Ahmad, M.A. Bashir, M.M.Q. Baig, A.A. Quresh, M.K.N. Shah, and I.A. Hafiz. 2018. Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus 'White Prosperity'. Folia Hort. 30:307-319.
Mason, A., M. Nelson, G. Yan, and W. Cowling. 2011. Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol. 11:103.
Milan, P.R. 2008. Chromosome behavior and fertility in induced polyploids of grain amaranths. Caryologia 61:199-205.
Miller, A.M., M.W. van Iersel, and A.M. Armitage. 2001. Whole-plant carbon dioxide exchange responses of Angelonia angustifolia to temperature and irradiance. J. Amer. Soc. Hort. Sci. 125:606-610.
Miller, A. and A.M. Armitage. 2002. Temperature, irradiance, photoperiod, and growth retardants influence greenhouse production of Angelonia angustifolia Benth. AngelMist series. HortScience 37:319-321.
Nederhoff, E.M. and J.G. Vegter. 1994. Photosynthesis of stands of tomato, cucumber, and sweet pepper measured in greenhouse under various CO2 concentrations. Ann. Bot. 73:353-361.
Needham, D.C. and H.T. Erickson. 1992. Fecundity of tetraploid × diploid crosses and fertility of the resultant triploids in Salpiglossis sinuata. HortScience 27:835-837.
Nemali, K.S. and M.W. van Iersel. 2008. Physiological responses to different substrate water contents: Screening for high water-use efficiency in bedding plants. J. Amer. Soc. Hort. Sci. 133:333-340.
Olsen, R.T., T.G. Ranney, and Z. Viloria. 2006. Reproductive behavior of induced allotetraploid 9 Chitalpa and in vitro embryo culture of polyploid progeny. J. Amer. Soc. Hort. Sci. 131:716-724.
Paterson, A.H. 2005. Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123:191-196.
Phillips, B.B., R.F. Shaw, M.J. Holland, E.L. Fry, R.D. Bardgett, J.M. Bullock, and J.L. Osborne. 2018. Drought reduces floral resources for pollinators. Global Change Boil. 24:3226-3235.
Planchais, S., N. Glab, D. Inzé, and C. Bergounioux. 2000. Chemical inhibitors: a tool for plant cell cycle studies. Febs Lett. 476:78-83.
Plaschil, S. and K. Olbricht. 2008. Histogenetic variation in flowers of Angelonia Humb. et Bonpl. J, Appl. Bot. Food Qual. 82:41-46.
Rathod, A.D., S.R. Patil, P.N. Taksande, G.W. Karad, V.B. Kalamkar, and V.S. Jayade. 2018. Effect of colchicine on morphological and biometrical traits in African marigold. J. Soil. Crop. 28:72-80.
Rounsaville, T.J., D.H. Touchell, and T.G. Ranney. 2011. Fertility and reproductive pathways in diploid and triploid Miscanthus sinensis. HortScience 46:1353-1357.
Sagorin, C., N.H. Ertel and S.L. Wallace. 1972. Photoisomerization of colchicine: Loss of significant antimitotic activity in human lymphocytes. Arthritis Rheum. 15:213-217.
Sakamoto, T., Y. Hashiguchi, E. Kurauchi, M. Imamura, Y. Ishibashi, S. Muranaka, T. Yuasa, and M. Iwaya-Inoue. 2012. Causative factors of decreasing flower number in cowpea under drought stress during flowering stage. Cryobiol. Cryotechnol. 58:81-85.
Sánchez-Rodríguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, R. Leyva, L. Romero, and J.M. Ruiz. 2010. Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant Soil 335:339-347.
Sattler, M.C., C.R. Carvalho, and W.R. Clarindo. 2016. The polyploidy and its key role in plant breeding. Planta 243:281-296.
Simmonds, N.W. 1960. Flower colour in Lochnera rosea. Heredity 14:253-261.
Smith, J.L. 2000 Breeding Africa violets, p. 133-154. In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants, Timber Press, Portland, Ore.
Stebbins, G.L. 1971. Chromosomal evolution in higher plants. Addison-Wesley. London. UK.
Stebbins, G.L. 1947. Types of polyploids: their classification and significance, p. 403-429. In: D. Kumar (eds.). Advances in genetics. Elsevier, Amsterdam, NL.
Steiner, K.E. 1996. Chromosome numbers and relationships in tribe Hemimerideae (Scrophulariaceae). Syst. Bot. 21:63-76.
Sreevalli, Y., R.N. Kulkarni, and K. Baskaran. 2002. Inheritance of flower color in periwinkle: orange-red corolla and white eye. J. Hered. 93:55-57.
Tang, Z.Q., D.L. Chen, Z.J. Song, Y.C. He, and D.T. Cai. 2010. In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tiss. Org. Cult. 102:213-220.
Thao, N.T.P., K. Ureshino, I. Miyajima, Y. Ozaki, and H. Okubo. 2003. Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tiss. Org. Cult. 72:19-25.
Tiku, A.R., M.K. Razdan, and S.N. Raina. 2014. Production of triploid plants from endosperm cultures of Phlox drummondii. Biol. Plant. 58:153-158.
Trueblood, C.E., T.G. Ranney, N.P. Lynch, J.C. Neal, and R.T. Olsen. 2010. Evaluating fertility of triploid clones of Hypericum androsaemum L. for use as non-invasive landscape plants. HortScience 45:1026-1028.
UPOV. 2007. Angelonia angustifolia Benth. and its hybrids: Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability. Document TG/ANGLN(proj.3). International Union for the Protection of New Varieties of Plants. Geneva, Switzerland. 18pp.
van Laere, K., S.C. França, H. Vansteenkiste, J. van Huylenbroeck, K. Steppe, and M.C. van Labeke. 2011. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol. Plant. 33:1149-1156.
Vogel, S. and I.C. Machado. 1991. Pollination of four sympatric species of Angelonia (Scrophulariaceae) by oil-collecting bees in NE. Brazil. Plant Syst. Evol. 178:153-178.
Wang, W., Y. He, Z. Cao, and Z. Deng. 2018. Induction of tetraploids in impatiens (Impatiens walleriana) and characterization of their changes in morphology and resistance to downy mildew. HortScience 53:925-931.
Wang, X., Z.M. Cheng, S. Zhi, and F. Xu. 2016. Breeding triploid plants: A review. Czech J. Genet. Plant Breed. 52:41-54.
Xu, J., J. Jin, H. Zhao, and K. Li. 2019. Drought stress tolerance analysis of Populus ussuriensis clones with different ploidies. J. For. Res. 30:1267-1275.
Ye, Y.M., J. Tong, X.P. Shi, W. Yuan, and G.R. Li. 2010. Morphological and cytological studies of diploid and colchicine-induced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Scientia Hort. 124:95-101.
Yordanova, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
Zaprianova, N., V. Ivanova, and V. Panchev. 2018. Micropropagation of Angelonia angustifolia from stem explants. Intl. Agr. Biol. Life Sci. Conf.. 526-531.
Zhang, Q., F. Zhang, B. Li, L. Zhang, and H. Shi. 2016. Production of tetraploid plants of Trollius chinensis Bunge induced by colchicine. Czech J. Genet. Plant Breed. 52:34-38.
Zhang, X.L., J. Zhang, Y.H. Guo, P. Sun, H.X. Jia, W. Fan, M.Z. Lu, and J.J. Hu. 2016. Comparative proteomic analysis of mature pollen in triploid and diploid Populus deltoides. Intl. J. Mol. Sci. 17:1475-1491.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48865-
dc.description.abstract天使花(Angelonia angustifolia Benth.)為世界上重要的花壇植物之一,其耐熱且耐濕特性適應臺灣夏季氣候,廣泛應用於景觀。不過天使花之花朵小且不耐旱,而多倍體植株常能展現較大的器官,以及較佳的逆境耐受性,因此期望透過秋水仙素(colchicine)誘導產生多倍體天使花,以提升其觀賞價值及耐旱性。另外測試四倍體天使花之花粉發芽力,並進行二、四倍體之間的雜交,期望獲得三倍體後代,比較其與二、四倍體天使花之性狀差異。另外,選育具市場潛力之四倍體天使花品系,並進行介質體積含水量(volumetric water content, VWC)試驗,了解不同VWC栽培對四倍體品系生長與光合作用之影響。最後透過二倍體天使花‘Serena Purple’與‘Serena White’之雜交,探討花色遺傳模式。
本研究以0%-0.2%秋水仙素處理天使花‘Serena Purple’及‘Serena White’之種子或實生苗12小時,以及滴加於天使花‘Serena Purple’之莖頂三天,四倍體誘導率皆低於10%。誘導產生之四倍體天使花,其花朵大於‘Serena Purple’及‘Serena White’,氣孔長與寬皆顯著較大、氣孔密度較低,且花粉直徑較大。其中包含兩個優良四倍體天使花品系,分別為紫花的SPU320102與白花的SWH110115,其花朵大、花瓣排列緊密。由於0%-0.2%秋水仙素處理之誘導率低,因此另以高濃度秋水仙素0%-1.0%浸泡‘Serena Lavender Pink’之種子,結果0.8%秋水仙素處理之四倍體誘導率為27.8%,為所有處理中最高。
二倍體天使花‘Serena Purple’與‘Serena White’以及誘導產生之四倍體品系之花粉經培養3小時後,所有品系之花粉發芽率皆超過80%,推測誘導形成之四倍體為異源多倍體。將天使花‘Serena Purple’、‘Serena White’與四倍體品系雜交,以四倍體為母本時,蒴果形成率較高且種子數多,但所有組合種子發芽率皆低。最後獲得1株三倍體後代,其花粉發芽率顯著低於其親本,不過其花朵小,觀賞價值低。
另將性狀優良四倍體品系SPU320102與SWH110115與對照品種進行性狀比較。結果顯示SPU320102與SWH110115之葉片較寬而濃綠、葉表帶有光澤,且其花朵大、花瓣反捲程度弱、花喉較寬且花喉內部之斑塊較濃密,另外,SPU320102之花色較深。而後以20%、40%及70% VWC栽培天使花四倍體品系SPU320102及SWH110115與對照品種‘Serena Purple’與‘Serena White’。結果顯示乾旱逆境下,四倍體品系葉片較寬而厚、葉色濃綠且較堅挺,且栽培期間之澆水次數較少,因此四倍體之耐旱性較佳。
‘Serena Purple’自交後代以及‘Serena Purple’與‘Serena White’正反交後代,皆分離出紫色3:淡粉色1之植株分離比,而‘Serena White’自交後代花色皆為白色。推測天使花之花色由W基因及P基因控制,當W基因為顯性(W_),則花瓣有花青素累積,當W基因為隱性(ww),則花瓣為白色;另外當P基因為顯性(P_),花瓣累積紫色花青素,當P基因為隱性(pp),花瓣呈現淡粉色,且W基因相對於P基因具有隱性上位性之關係,並推測天使花‘Serena Purple’與‘Serena White’之基因型分別為WWPp與wwPp。
zh_TW
dc.description.abstractAngelonia angustifolia Benth. is one of the most important bedding plants in the world. Due to its excellent heat and waterlogging tolerance, angelonia has been widely used by landscapers in Taiwan. However, angelonia is susceptible to drought, and its ornamental value is limited by its relatively small flowers. The objective of this study is to improve the ornamental traits and drought tolerance by inducing polyploids from Angelonia angelonia, as polyploids usually produce larger organs, and are stress-tolerant. Pollen germinability of tetraploid angelonia was tested, and diploid angelonia was crossed with tetraploid to obtain triploid progeny. After that, the traits of triploid were compared with diploid and tetraploid angelonia parents. Tetraploid lines with market potential were also selected, where the effect of volumetric water content (VWC) on growth and photosynthetic capacity of tetraploid angelonia lines was evaluated. The flower color inheritance pattern of the crossing of diploid Angelonia angelonia ‘Serena Purple’ and ‘Serena White’ was also investigated.
By soaking seeds or seedlings of Angelonia angelonia ‘Serena Purple’ and ‘Serena White’ with 0%-0.20% colchicine solution for 12 hours, and dripping on the apical meristem of Angelonia angelonia ‘Serena Purple’ with 0%-0.20% colchicine solution for three days. The tetraploid induction rate among both treatments were less than 10%. The tetraploid Angelonia has a larger flower, stomata, and pollen diameter while the stomatal density is lower than that of the diploid. Due to the low tetraploid induction rate when treated with 0%-0.20% colchicine, the seeds of Angelonia angelonia ‘Serena Lavender Pink’ were treated with 0%-1.0% colchicine instead. The tetraploid induction rate after 0.8% colchicine treatment was 27.8%, the highest among all treatments.
The pollen germination rates were over 80% among diploid ‘Serena Purple’, ‘Serena White’, and tetraploid lines after 3 hours of pollen culture, indicating the induced tetraploids were allotetraploids. After crossing diploid ‘Serena Purple’ and ‘Serena White’ with tetraploid lines, the capsule formation rate and seeds per capsule were higher when using tetraploid angelonia cultivars as seed parents.
Traits of tetraploid lines SPU320102 and SWH110115 were compared with the control cultivars. SPU320102 and SWH110115 had wider and darker green leaves, larger flowers, and weak corolla reflexing. The flower chamber was wider and the markings inside the chamber were denser than diploid comparative cultivars. Moreover, the flower color of SPU320102 was darker than ‘Serena Purple’. Cultivating Angelonia angelonia ‘Serena Purple’, ‘Serena White’, tetraploid lines SPU320102 and SWH110115 with 20%, 40%, or 70% VWC. The leaves of tetraploid lines were wider, thicker, darker, and do not wilt under drought stress. The water demand was also lower in tetraploid lines, thereby showing an increase in drought tolerance for the tetraploid lines.
Flower colors of progeny from selfing of ‘Serena Purple’ and reciprocal crosses between ‘Serena Purple’ and ‘Serena White’ resulted in a 3:1 ratio (purple:light pink). Selfing of ‘Serena White’ resulted in all-white progeny. Flower color inheritance was proposed to be controlled by two genes (W, P). Genotype ww resulted in a white flower, and genotype W_ resulted in colored flowers. Genotype P_ resulted in purple flower, while genotype pp resulted in a light pink flower. W gene has recessive epistasis when compared to P gene. The genotypes of ‘Serena Purple’ and ‘Serena White’ were proposed to be WWPp and wwPp, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:10:31Z (GMT). No. of bitstreams: 1
U0001-1308202009494300.pdf: 3589953 bytes, checksum: 77cc6ce5bf25af6914148035e226292d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝(Acknowledgement) i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
前言(Introduction) 1
前人研究(Literature Review) 3
一、天使花之概述 3
二、多倍體之特性 3
三、多倍體之形成機制 4
四、多倍體之誘導及應用於園藝作物育種 4
五、多倍體之檢定 5
(一) 氣孔形態 5
(二) 花粉形態 6
(三) 流式細胞儀檢定 6
六、多倍體之花粉發芽力 6
(一) 同源多倍體 6
(二) 異源多倍體 7
七、三倍體育種 7
(一) 三倍體之形成 7
(二) 三倍體育種應用於花卉作物 8
八、天使花之環境適應性 9
九、多倍體植物之環境耐受性 10
十、花色遺傳 10
材料與方法(Materials and Methods) 12
一、植物材料及一般維護管理 12
二、試驗設計 12
試驗一、低濃度(0%-0.2%)秋水仙素浸泡種子對天使花‘Serena Purple’、‘Serena White’與 ‘Serena Lavender Pink’生長與開花之影響 12
試驗二、秋水仙素浸泡實生苗對天使花‘Serena Purple’和‘Serena White’生長與開花之影響 15
試驗三、秋水仙素滴加於頂芽對天使花‘Serena Purple’植株生長與花朵大小之影響 15
試驗四、高濃度(0%-1.0%)秋水仙素浸泡種子對天使花‘Serena Lavender Pink’生長與開花之影響 16
試驗五、培養時間對多倍體花粉發芽率之影響 16
試驗六、三倍體天使花之育成 17
試驗七、單株選拔與DUS檢定 18
試驗八、介質體積含水量對四倍體天使花選株生長與光合作用之影響 19
試驗九、天使花之花色遺傳 20
三、統計分析 21
結果(Results) 22
試驗一、低濃度(0%-0.2%)秋水仙素浸泡種子誘導天使花‘Serena Purple’與‘Serena White’產生四倍體植株 22
試驗二、秋水仙素浸泡實生苗對天使花‘Serena Purple’和‘Serena White’生長與開花之影響 22
試驗三、秋水仙素滴加於頂芽對天使花‘Serena Purple’植株生長與花朵大小之影響 23
試驗四、高濃度(0%-1.0%)秋水仙素浸泡種子誘導天使花‘Serena Lavender Pink’產生四倍體植株 24
試驗五、培養時間對四倍體花粉發芽率之影響 25
試驗六、三倍體天使花之育成 25
試驗七、單株選拔與DUS檢定 27
試驗八、介質體積含水量對四倍體天使花選株生長及光合作用之影響 28
試驗九、天使花之花色遺傳 30
討論(Discussion) 95
一、秋水仙素處理對天使花多倍體化之影響 95
二、四倍體天使花之花粉發芽力 97
三、三倍體天使花之育成 98
四、天使花單株選拔與DUS檢定 99
五、介質體積含水量對天使花生長與光合作用之影響 100
六、天使花之花色遺傳 103
結論(Conclusion) 104
參考文獻(References) 106
dc.language.isozh-TW
dc.title天使花的多倍體育種與花色遺傳zh_TW
dc.titlePolyploidy Breeding and Flower Color Inheritance of Angelonia angustifoliaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈榮壽(Rong-Show Shen),陳彥銘(Yen-Ming Chen),許富鈞(Fu-Chiun Hsu)
dc.subject.keyword多倍體育種,秋水仙素,流式細胞儀,介質體積含水量,花色遺傳,zh_TW
dc.subject.keywordpolyploidy breeding,colchicine,flow cytometry,volumetric water content,flower color inheritance,en
dc.relation.page114
dc.identifier.doi10.6342/NTU202003201
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1308202009494300.pdf
  目前未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved