請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48851完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰(Ruey-Feng Chang) | |
| dc.contributor.author | Meng-Chin Chou | en |
| dc.contributor.author | 周孟瑾 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:10:17Z | - |
| dc.date.available | 2022-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-09-28 | |
| dc.identifier.citation | [1] J.-L. Vachiéry, Y. Adir, J. A. Barberà, H. Champion, J. G. Coghlan, V. Cottin, et al., 'Pulmonary hypertension due to left heart diseases,' Journal of the American College of Cardiology, vol. 62, 2013.
[2] C. J. Lettieri, S. D. Nathan, S. D. Barnett, S. Ahmad, and A. F. Shorr, 'Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis,' CHEST Journal, vol. 129, pp. 746-752, 2006. [3] L. M. Brown, H. Chen, S. Halpern, D. Taichman, M. D. McGoon, H. W. Farber, et al., 'Delay in recognition of pulmonary arterial hypertension: factors identified from the REVEAL Registry,' CHEST Journal, vol. 140, pp. 19-26, 2011. [4] H. Nunes, M. Humbert, F. Capron, M. Brauner, O. Sitbon, J.-P. Battesti, et al., 'Pulmonary hypertension associated with sarcoidosis: mechanisms, haemodynamics and prognosis,' Thorax, vol. 61, pp. 68-74, 2006. [5] M. M. Hoeper, H. J. Bogaard, R. Condliffe, R. Frantz, D. Khanna, M. Kurzyna, et al., 'Definitions and diagnosis of pulmonary hypertension,' Journal of the American College of Cardiology, vol. 62, 2013. [6] J. Houtchens, D. Martin, and J. R. Klinger, 'Diagnosis and management of pulmonary arterial hypertension,' Pulmonary medicine, vol. 2011, 2011. [7] A. Devaraj, A. U. Wells, M. G. Meister, T. J. Corte, and D. M. Hansell, 'The Effect of Diffuse Pulmonary Fibrosis on the Reliability of CT Signs of Pulmonary Hypertension 1,' Radiology, vol. 249, pp. 1042-1049, 2008. [8] R. T. Tan, R. Kuzo, L. R. Goodman, R. Siegel, G. B. Haasler, and K. W. Presberg, 'Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease,' CHEST Journal, vol. 113, pp. 1250-1256, 1998. [9] A. Homma, A. Anzueto, J. I. Peters, I. Susanto, E. Sako, M. Zabalgoitia, et al., 'Pulmonary artery systolic pressures estimated by echocardiogram vs cardiac catheterization in patients awaiting lung transplantation,' The Journal of heart and lung transplantation, vol. 20, pp. 833-839, 2001. [10] S. M. Arcasoy, J. D. Christie, V. A. Ferrari, M. S. J. Sutton, D. A. Zisman, N. P. Blumenthal, et al., 'Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease,' American journal of respiratory and critical care medicine, vol. 167, pp. 735-740, 2003. [11] P. G. Yock and R. L. Popp, 'Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation,' Circulation, vol. 70, pp. 657-662, 1984. [12] R. J. Barst, M. McGoon, A. Torbicki, O. Sitbon, M. J. Krowka, H. Olschewski, et al., 'Diagnosis and differential assessment of pulmonary arterial hypertension,' Journal of the American College of Cardiology, vol. 43, pp. S40-S47, 2004. [13] M. R. Fisher, P. R. Forfia, E. Chamera, T. Housten-Harris, H. C. Champion, R. E. Girgis, et al., 'Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension,' American journal of respiratory and critical care medicine, vol. 179, pp. 615-621, 2009. [14] M.-P. Revel, J.-B. Faivre, M. Remy-Jardin, V. Delannoy-Deken, A. Duhamel, and J. Remy, 'Pulmonary Hypertension: ECG-gated 64-Section CT Angiographic Evaluation of New Functional Parameters as Diagnostic Criteria 1,' Radiology, vol. 250, pp. 558-566, 2009. [15] M. McGoon, D. Gutterman, V. Steen, R. Barst, D. C. McCrory, T. A. Fortin, et al., 'Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines,' CHEST Journal, vol. 126, pp. 14S-34S, 2004. [16] M. M. Hoeper, S. H. Lee, R. Voswinckel, M. Palazzini, X. Jais, A. Marinelli, et al., 'Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers,' Journal of the American College of Cardiology, vol. 48, pp. 2546-2552, 2006. [17] K. KURIYAMA, G. GAMSU, R. G. STERN, C. E. CANN, R. J. HERFKENS, and B. H. BRUNDAGE, 'CT-determined pulmonary artery diameters in predicting pulmonary hypertension,' Investigative radiology, vol. 19, pp. 16-22, 1984. [18] M. M. Hoeper, 'Definition, classification, and epidemiology of pulmonary arterial hypertension,' in Seminars in respiratory and critical care medicine, 2009, pp. 369-375. [19] A. Mahammedi, A. Oshmyansky, P. M. Hassoun, D. R. Thiemann, and S. S. Siegelman, 'Pulmonary artery measurements in pulmonary hypertension: the role of computed tomography,' Journal of thoracic imaging, vol. 28, pp. 96-103, 2013. [20] A. Devaraj, A. U. Wells, M. G. Meister, T. J. Corte, S. J. Wort, and D. M. Hansell, 'Detection of Pulmonary Hypertension with Multidetector CT and Echocardiography Alone and in Combination 1,' Radiology, vol. 254, pp. 609-616, 2010. [21] T. I. Murray, L. M. Boxt, J. Katz, K. Reagan, and R. J. Barst, 'Estimation of pulmonary artery pressure in patients with primary pulmonary hypertension by quantitative analysis of magnetic resonance images,' Journal of thoracic imaging, vol. 9, pp. 198-204, 1994. [22] T. Chung, Computational fluid dynamics: Cambridge university press, 2010. [23] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method: Pearson Education, 2007. [24] B.-K. Lee, 'Computational fluid dynamics in cardiovascular disease,' Korean circulation journal, vol. 41, pp. 423-430, 2011. [25] S. Qi, Z. Li, Y. Yue, H. J. van Triest, and Y. Kang, 'Computational fluid dynamics simulation of airflow in the trachea and main bronchi for the subjects with left pulmonary artery sling,' Biomedical engineering online, vol. 13, p. 1, 2014. [26] C. S. Ng, A. U. Wells, and S. P. Padley, 'A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter,' Journal of thoracic imaging, vol. 14, pp. 270-278, 1999. [27] R. C. Gonzalez and R. E. Woods, 'Digital image processing,' Nueva Jersey, 2008. [28] W. J. Schroeder, L. S. Avila, and W. Hoffman, 'Visualizing with VTK: a tutorial,' IEEE Computer graphics and applications, vol. 20, pp. 20-27, 2000. [29] A. M. Tahmasebi, P. Abolmaesumi, D. Thompson, and K. Hashtrudi-Zaad, 'Software structure design for a haptic-based medical examination system,' in IEEE International Workshop on Haptic Audio Visual Environments and their Applications, 2005, p. 6 pp. [30] J. S. Fong and H. Ibrahim, 'Development of a virtual reality system for Hepatocellular Carcinoma pre-surgical planning,' in Software Technology and Engineering (ICSTE), 2010 2nd International Conference on, 2010, pp. V1-41-V1-45. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48851 | - |
| dc.description.abstract | 肺動脈高壓是一種嚴重的肺部血管疾病,因為肺動脈構造改變,使得肺動脈內的血液壓力持續增加。患有肺動脈高壓的病人會覺得呼吸困難、感覺胸痛等。在臨床上,一連串的檢查例如心臟超音波和電腦斷層掃描確認病人是否患有肺動脈高壓、以及利用右心導管檢查測量肺動脈血壓高低。雖然這些屬於標準的肺動脈檢查程序,但是病患可能因為沒有特殊症狀而無法順利進行診斷。在本篇研究中,利用電腦斷層掃描影像重建三維肺動脈結構,並利用計算流體力學軟體去模擬肺動脈中血液壓力分佈。本研究目的建立於利用CFD模擬軟體建立出的肺動脈壓力分佈,藉由從中獲取的壓力特徵值來增加肺動脈高壓預測模組的準確率。
程式首先,利用半自動切割法將電腦斷層掃描影像中切割出肺動脈範圍建立成一個三維肺動脈模型,再標示三維肺動脈模型的出入口後,接著使用計算流體力學模擬肺動脈血液壓力分佈,最後,擷取壓力特徵來模擬肺動脈壓力分佈以及擷取體積特徵來模擬肺動脈結構並進行分析。實驗結果發現,藉由加入壓力特徵值可提高預測病人是否患有肺高壓準確率,原先使用兩個壓力特徵值的預測準確率可達77.78%,若是加上四個壓力特徵值的組合能夠提高準確率至83.33%。最後使用特徵選擇法選擇較佳的特徵組合將預測準確率最高提高至88.89%。 | zh_TW |
| dc.description.abstract | Pulmonary hypertension (PH) is a serious lung disease nowadays. Because the pulmonary artery (PA) structure is changed, resulting in the increase of PA blood pressure. Patients suffering from PH are difficult in breathing and fell chest pain. In clinic, several examinations, such as echocardiograph and computed tomography (CT) are used to examine the PH patient, and right heart catheterization is used to measure the PA blood pressure for PH diagnosis. Although these examinations are standard medical procedures, patients would not be diagnosed easily without obvious symptoms. In this study, we analyzed the PA pressure distribution on a three-dimensional (3-D) PA model built from a CT scan by using a computational fluid dynamics (CFD) software. The aim of this study is to offer a PH prediction model based on the pressure-based features extracted from the PA pressure distribution by the CFD simulation, and to increase the PH prediction accuracy. First, a semi-automatic segmentation was presented to obtain a 3-D PA model from a CT scan. After setting inlet and outlet planes on the 3-D PA model, the CFD simulation was performed to simulate the blood pressure distribution. Then, the pressure-based and volume-based features were used to extract the characteristics of the simulated PA pressure distribution and the PA structure, respectively. The experimental results showed that the PH prediction accuracy can be improved by using the pressure-based features. Originally, the PH prediction accuracy was 77.78% by using the combination of two volume-based pressures. Then, the accuracy was increase to 83.33% by using the combination of four pressure-based features and two volume-based features. Finally, the feature selection was used to select an optimal feature combination to obtain the highest accuracy of 88.89%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:17Z (GMT). No. of bitstreams: 1 ntu-105-P03922001-1.pdf: 3352646 bytes, checksum: 6912b1fa94bbc59e5c7f235f4dad6833 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Materials 7 2.1 Data Acquisition 7 2.2 Pulmonary Artery Definition 8 2.3 Parameters Definition of CFD simulation 11 Chapter 3 The Proposed Method 13 3.1 Pulmonary Artery Segmentation 15 3.2 3-D Pulmonary Artery Surface Reconstruction 16 3.2.1 3-D Model Reconstruction 16 3.2.2 3-D Mesh Surface Generation 17 3.3 Surface Parameter Setting 19 3.3.1 Inlet and Outlet Settings 19 3.3.2 Mesh Size Setting 22 3.4 Computational Fluid Dynamics Simulation 23 3.4.1 CFD-ACE 24 3.4.2 CFD-VIEW 24 3.4.3 Feature Extraction 26 3.4.4 The Regenerated Flow Chart of Method 29 3.4.5 Statistical Analysis 31 Chapter 4 Results and Discussion 33 4.1 Results 33 4.2 Discussion 37 4.2.1 Individual Feature Comparison 38 4.2.2 Pressure Feature and Volume Feature Combination 41 4.2.3 The Same Accuracy Comparison 43 4.2.4 Performance Improvement 44 Chapter 5 Conclusion and Future Work 46 References 49 | |
| dc.language.iso | en | |
| dc.subject | 肺動脈高壓 | zh_TW |
| dc.subject | 胸腔電腦斷層掃描 | zh_TW |
| dc.subject | 肺動脈 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | pulmonary artery | en |
| dc.subject | pulmonary hypertension | en |
| dc.subject | CFD | en |
| dc.subject | CT | en |
| dc.title | 利用計算流體力學模擬肺動脈壓力來分析與肺動脈高壓症狀之間的關係 | zh_TW |
| dc.title | Pulmonary artery pressure analysis on CT angiography using computational fluid dynamics simulation in patients with pulmonary hypertension | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅崇銘(Chung-Ming Lo),陳啟禎(Chii-Jen Chen) | |
| dc.subject.keyword | 肺動脈,肺動脈高壓,胸腔電腦斷層掃描,計算流體力學, | zh_TW |
| dc.subject.keyword | pulmonary artery,pulmonary hypertension,CT,CFD, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201600330 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-09-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
