Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴育英(Yu-Ying Lai)
dc.contributor.authorWei-Chun Laien
dc.contributor.author賴維駿zh_TW
dc.date.accessioned2021-06-15T11:09:49Z-
dc.date.available2021-06-01
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation1. Osterloh, F. E., Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Letters 2017, 2 (2), 445-453.
2. Brunning, A.; Institute, A. G. C. Endangered Elements. https://www.acs.org/content/acs/en/greenchemistry/research-innovation/endangered-elements.html (accessed 2020/06/28).
3. Sakakura, T.; Choi, J.-C.; Yasuda, H., Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387.
4. Tolman, W. B., Activation of small molecules: organometallic and bioinorganic perspectives. John Wiley Sons: 2006.
5. Wu, J.; Yang, X.; He, Z.; Mao, X.; Hatton, T. A.; Jamison, T. F., Continuous Flow Synthesis of Ketones from Carbon Dioxide and Organolithium or Grignard Reagents. Angewandte Chemie International Edition 2014, 53 (32), 8416-8420.
6. Omae, I., Recent developments in carbon dioxide utilization for the production of organic chemicals. Coordination Chemistry Reviews 2012, 256 (13), 1384-1405.
7. Johnson, Matthew P., Photosynthesis. Essays in Biochemistry 2016, 60 (3), 255-273.
8. Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A., Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications 2019, 10 (1), 3169.
9. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
10. Li, X.; Yu, J.; Jaroniec, M.; Chen, X., Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6), 3962-4179.
11. Pellegrin, Y.; Odobel, F., Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chimie 2017, 20 (3), 283-295.
12. Wang, Z.; Teramura, K.; Huang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T., Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catalysis Science Technology 2016, 6 (4), 1025-1032.
13. Teramura , K.; Wang, Z.; Hosokawa , S.; Sakata, Y.; Tanaka , T., A Doping Technique that Suppresses Undesirable H2 Evolution Derived from Overall Water Splitting in the Highly Selective Photocatalytic Conversion of CO2 in and by Water. Chemistry – A European Journal 2014, 20 (32), 9906-9909.
14. Xie, S.; Zhang, Q.; Liu, G.; Wang, Y., Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chemical Communications 2016, 52 (1), 35-59.
15. Matsuoka, S.; Kohzuki, T.; Pac, C.; Yanagida, S., Photochemical Reduction of Carbon Dioxide to Formate Catalyzed by p-Terphenyl in Aprotic Polar Solvent. Chemistry Letters 1990, 19 (11), 2047-2048.
16. Wang, T.-X.; Liang, H.-P.; Anito, D. A.; Ding, X.; Han, B.-H., Emerging applications of porous organic polymers in visible-light photocatalysis. J. Mater. Chem. A 2020, 8 (15), 7003-7034.
17. Liu, M.; Guo, L.; Jin, S.; Tan, B., Covalent triazine frameworks: synthesis and applications. J. Mater. Chem. A 2019, 7 (10), 5153-5172.
18. Das, S.; Heasman, P.; Ben, T.; Qiu, S., Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews 2017, 117 (3), 1515-1563.
19. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166.
20. Lohse, M. S.; Bein, T., Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials 2018, 28 (33), 1705553.
21. Zeng, Y.; Zou, R.; Zhao, Y., Covalent Organic Frameworks for CO2 Capture. Advanced Materials 2016, 28 (15), 2855-2873.
22. Cui, X.; Lei, S.; Wang, A. C.; Gao, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q., Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 24.
23. Li, J. D.; Zhao, D. N.; Liu, J. Q.; Liu, A. A.; Ma, D. G., Covalent Organic Frameworks: A Promising Materials Platform for Photocatalytic CO2 Reductions. Molecules 2020, 25 (10), 21.
24. Zhi, Y. F.; Wang, Z. R.; Zhang, H. L.; Zhang, Q. C., Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts. Small, 21.
25. Medina, D. D.; Petrus, M. L.; Jumabekov, A. N.; Margraf, J. T.; Weinberger, S.; Rotter, J. M.; Clark, T.; Bein, T., Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. ACS Nano 2017, 11 (3), 2706-2713.
26. Lv, J.; Tan, Y.-X.; Xie, J.; Yang, R.; Yu, M.; Sun, S.; Li, M.-D.; Yuan, D.; Wang, Y., Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angewandte Chemie International Edition 2018, 57 (39), 12716-12720.
27. Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V., H2 Evolution with Covalent Organic Framework Photocatalysts. ACS Energy Letters 2018, 3 (2), 400-409.
28. Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W.-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I., Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry 2018, 10 (12), 1180-1189.
29. Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V., A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications 2015, 6 (1), 8508.
30. Wu, Y.; Xu, H.; Chen, X.; Gao, J.; Jiang, D., A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for Diels–Alder reactions under ambient conditions. Chemical Communications 2015, 51 (50), 10096-10098.
31. Li, H.; Feng, X.; Shao, P.; Chen, J.; Li, C.; Jayakumar, S.; Yang, Q., Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications. J. Mater. Chem. A 2019, 7 (10), 5482-5492.
32. Lin, C.-Y.; Zhang, D.; Zhao, Z.; Xia, Z., Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials 2018, 30 (5), 1703646.
33. Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO lt;sub gt;2 lt;/sub gt; reduction in water. Science 2015, 349 (6253), 1208.
34. Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W., Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Applied Catalysis B: Environmental 2018, 239, 46-51.
35. Li, Z.; Feng, X.; Zou, Y.; Zhang, Y.; Xia, H.; Liu, X.; Mu, Y., A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications 2014, 50 (89), 13825-13828.
36. Chakrabortty, S.; Nayak, J.; Ruj, B.; Pal, P.; Kumar, R.; Banerjee, S.; Sardar, M.; Chakraborty, P., Photocatalytic conversion of CO2 to methanol using membrane-integrated Green approach: A review on capture, conversion and purification. Journal of Environmental Chemical Engineering 2020, 8 (4), 103935.
37. Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y., A Metal-Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO2 with H2O. ChemSusChem 2020, 13 (7), 1725-1729.
38. Wang, L. J.; Wang, R. L.; Zhang, X.; Mu, J. L.; Zhou, Z. Y.; Su, Z. M., Improved Photoreduction of CO2 with Water by Tuning the Valence Band of Covalent Organic Frameworks. ChemSusChem 2020, 13 (11), 2973-2980.
39. Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J., 2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO2 Reduction. J. Am. Chem. Soc. 2018, 140 (44), 14614-14618.
40. Lu, M.; Li, Q.; Liu, J.; Zhang, F.-M.; Zhang, L.; Wang, J.-L.; Kang, Z.-H.; Lan, Y.-Q., Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2019, 254, 624-633.
41. Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z., A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141 (18), 7615-7621.
42. Sarkar, P.; Riyajuddin, S.; Das, A.; Hazra Chowdhury, A.; Ghosh, K.; Islam, S. M., Mesoporous covalent organic framework: An active photo-catalyst for formic acid synthesis through carbon dioxide reduction under visible light. Molecular Catalysis 2020, 484, 110730.
43. Fu, Z.; Wang, X.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. I., A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science 2020, 11 (2), 543-550.
44. Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J., A Scalable General Synthetic Approach toward Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2019, 141 (43), 17431-17440.
45. Kuhn, P.; Antonietti, M.; Thomas, A., Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition 2008, 47 (18), 3450-3453.
46. Hug, S.; Tauchert, M. E.; Li, S.; Pachmayr, U. E.; Lotsch, B. V., A functional triazine framework based on N-heterocyclic building blocks. Journal of Materials Chemistry 2012, 22 (28), 13956-13964.
47. Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R., Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environmental Science 2010, 3 (9), 1238-1251.
48. Zhu, X.; Tian, C.; Mahurin, S. M.; Chai, S.-H.; Wang, C.; Brown, S.; Veith, G. M.; Luo, H.; Liu, H.; Dai, S., A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation. J. Am. Chem. Soc. 2012, 134 (25), 10478-10484.
49. Liu, J.; Lyu, P.; Zhang, Y.; Nachtigall, P.; Xu, Y., New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium-Storage Properties. Advanced Materials 2018, 30 (11), 1705401.
50. Bi, J.; Fang, W.; Li, L.; Wang, J.; Liang, S.; He, Y.; Liu, M.; Wu, L., Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. Macromolecular Rapid Communications 2015, 36 (20), 1799-1805.
51. Yang, C.; Huang, W.; da Silva, L. C.; Zhang, K. A. I.; Wang, X., Functional Conjugated Polymers for CO2 Reduction Using Visible Light. Chemistry – A European Journal 2018, 24 (66), 17454-17458.
52. Yadav, R. K.; Kumar, A.; Park, N.-J.; Kong, K.-J.; Baeg, J.-O., A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO2. J. Mater. Chem. A 2016, 4 (24), 9413-9418.
53. Xu, R.; Wang, X.-S.; Zhao, H.; Lin, H.; Huang, Y.-B.; Cao, R., Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid–gas system. Catalysis Science Technology 2018, 8 (8), 2224-2230.
54. Bi, J.; Xu, B.; Sun, L.; Huang, H.; Fang, S.; Li, L.; Wu, L., A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO2 Reduction. ChemPlusChem 2019, 84 (8), 1149-1154.
55. Liang, W.; Church, T. L.; Zheng, S.; Zhou, C.; Haynes, B. S.; D'Alessandro, D. M., Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst. Chemistry – A European Journal 2015, 21 (51), 18576-18579.
56. Liang, H.-P.; Acharjya, A.; Anito, D. A.; Vogl, S.; Wang, T.-X.; Thomas, A.; Han, B.-H., Rhenium-Metalated Polypyridine-Based Porous Polycarbazoles for Visible-Light CO2 Photoreduction. ACS Catalysis 2019, 9 (5), 3959-3968.
57. Chen, Y.; Ji, G.; Guo, S.; Yu, B.; Zhao, Y.; Wu, Y.; Zhang, H.; Liu, Z.; Han, B.; Liu, Z., Visible-light-driven conversion of CO2 from air to CO using an ionic liquid and a conjugated polymer. Green Chemistry 2017, 19 (24), 5777-5781.
58. Aghaie, M.; Rezaei, N.; Zendehboudi, S., A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable and Sustainable Energy Reviews 2018, 96, 502-525.
59. Yu, X.; Yang, Z.; Qiu, B.; Guo, S.; Yang, P.; Yu, B.; Zhang, H.; Zhao, Y.; Yang, X.; Han, B.; Liu, Z., Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO2 Reduction with H2O to CO with High Efficiency. Angewandte Chemie International Edition 2019, 58 (2), 632-636.
60. Wang, S.; Hai, X.; Ding, X.; Jin, S.; Xiang, Y.; Wang, P.; Jiang, B.; Ichihara, F.; Oshikiri, M.; Meng, X.; Li, Y.; Matsuda, W.; Ma, J.; Seki, S.; Wang, X.; Huang, H.; Wada, Y.; Chen, H.; Ye, J., Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nature Communications 2020, 11 (1), 1149.
61. Zhou, N.; Facchetti, A., Naphthalenediimide (NDI) polymers for all-polymer photovoltaics. Materials Today 2018, 21 (4), 377-390.
62. Kolhe, N. B.; Lee, H.; Kuzuhara, D.; Yoshimoto, N.; Koganezawa, T.; Jenekhe, S. A., All-Polymer Solar Cells with 9.4% Efficiency from Naphthalene Diimide-Biselenophene Copolymer Acceptor. Chemistry of Materials 2018, 30 (18), 6540-6548.
63. Wu, Z.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S.; Wu, H.; Yip, H.-L.; Huang, F.; Cao, Y., n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2016, 138 (6), 2004-2013.
64. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y., Achieving over 16% efficiency for single-junction organic solar cells. Science China Chemistry 2019, 62 (6), 746-752.
65. Sarang, K. T.; Miranda, A.; An, H.; Oh, E.-S.; Verduzco, R.; Lutkenhaus, J. L., Poly(fluorene-alt-naphthalene diimide) as n-Type Polymer Electrodes for Energy Storage. ACS Applied Polymer Materials 2019, 1 (5), 1155-1164.
66. Woods, D. J.; Hillman, S. A. J.; Pearce, D.; Wilbraham, L.; Flagg, L. Q.; Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A. Y.; Zwijnenburg, M. A.; Sprick, R. S.; Nelson, J.; Cooper, A. I., Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy Environmental Science 2020, 13 (6), 1843-1855.
67. Hu, Z.; Wang, Z.; Zhang, X.; Tang, H.; Liu, X.; Huang, F.; Cao, Y., Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution. iScience 2019, 13, 33-42.
68. Pahlavanlu, P.; Tilley, A.; McAllister, B.; Seferos, D., Microwave Synthesis of Thionated Naphthalene Diimide-Based Small Molecules and Polymers. The Journal of Organic Chemistry 2017, 82.
69. DeBlase, C. R.; Hernández-Burgos, K.; Rotter, J. M.; Fortman, D. J.; dos S. Abreu, D.; Timm, R. A.; Diógenes, I. C. N.; Kubota, L. T.; Abruña, H. D.; Dichtel, W. R., Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. Angewandte Chemie International Edition 2015, 54 (45), 13225-13229.
70. Royuela, S.; Martínez-Periñán, E.; Arrieta, M. P.; Martínez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L., Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chemical Communications 2020, 56 (8), 1267-1270.
71. Spano, F. C.; Silva, C., H- and J-Aggregate Behavior in Polymeric Semiconductors. Annual Review of Physical Chemistry 2014, 65 (1), 477-500.
72. Henson, Z. B.; Zhang, Y.; Nguyen, T.-Q.; Seo, J. H.; Bazan, G. C., Synthesis and Properties of Two Cationic Narrow Band Gap Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2013, 135 (11), 4163-4166.
73. Gong, J.; Krishnan, S., Chapter 2 - Mathematical Modeling of Dye-Sensitized Solar Cells. In Dye-Sensitized Solar Cells, Soroush, M.; Lau, K. K. S., Eds. Academic Press: 2019; pp 51-81.
74. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials 2011, 23 (20), 2367-2371.
75. Tokmakoff, A. 15.5: Marcus Theory for Electron Transfer. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Time_Dependent_Quantum_Mechanics_and_Spectroscopy_(Tokmakoff)/15%3A_Energy_and_Charge_Transfer/15.05%3A_Marcus_Theory_for_Electron_Transfer (accessed July 10).
76. Zimmermann, J.; Zeug, A.; Röder, B., A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments. Physical Chemistry Chemical Physics 2003, 5 (14), 2964-2969.
77. Huang, J.; Wu, Y.; Fu, H.; Zhan, X.; Yao, J.; Barlow, S.; Marder, S. R., Photoinduced Intramolecular Electron Transfer in Conjugated Perylene Bisimide-Dithienothiophene Systems: A Comparative Study of a Small Molecule and a Polymer. The Journal of Physical Chemistry A 2009, 113 (17), 5039-5046.
78. Scheblykin, I. G.; Yartsev, A.; Pullerits, T.; Gulbinas, V.; Sundström, V., Excited State and Charge Photogeneration Dynamics in Conjugated Polymers. The Journal of Physical Chemistry B 2007, 111 (23), 6303-6321.
79. Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials 2019, 18 (11), 1222-1227.
80. Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T., Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? The Journal of Physical Chemistry C 2017, 121 (16), 8711-8721.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48821-
dc.description.abstract過量的二氧化碳排放是當今全球暖化主要原因,因此發展再生能源是近年來最受矚目的研究領域。二氧化碳的光催化還原反應不僅可減少二氧化碳的排放量、妥善將太陽能以化學鍵方式貯存,還可將二氧化碳轉化為加值化產物,促進人類經濟活動的豐富度。其中有機高分子材料的組成元素在地球含量相對其他貴金屬觸媒更豐沛,因此用於光催化二氧化碳還原的研究近幾年開始受到重視。我們使用萘雙亞醯胺與芴兩類型的單體合成聚合物與小分子,討論高分子上不同官能基結構、予體受體交互作用、以及分子共軛長度對於光催化二氧化碳還原反應的影響。在不添加犧牲試劑與金屬元素的條件下,將各項材料進行光催化二氧化碳還原的異相催化。其中PF-Br展現最佳的一氧化碳產率8.422 μmol g-1 h-1,且擁有接近100%對氫氣與甲烷的選擇性。本研究亦透過理論計算,探討光催化二氧化碳還原可能的反應機制,期望能找出影響光催化效率的關鍵因素。zh_TW
dc.description.abstractExcess emission of CO2 is considered the main reason for global warming; As a result, renewable energy has attracted much research attention in recent years. Photocatalytic CO2 reduction could potentially decrease CO2 concentration on earth. Moreover, the solar energy might be stored through transforming CO2 into other energy sources. Among all the photocatalysts used in CO2 reduction, organic polymers, which are mostly composed of abundant light elements, emerge as a highly promising material in recent years. In this study, we use naphthalene diimide and fluorene units to synthesize a variety of compounds, and discuss the relation among the photocatalytic efficiency, the physical properties, and chemical structures. Experiments of heterogeneous photocatalytic CO2 reduction with water were carried out, in the absent of sacrificial agents and metal cocatalysts. The results reveal that PF-Br showed the highest CO production rate of 8.422 μmol g-1 h-1 and the selectivity was close to 100%. Last but not least, the mechanisms with regard to the photocatalytic reduction of CO2 to CO are investigated by with DFT calculation, providing rationale for the experimental observation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:49Z (GMT). No. of bitstreams: 1
U0001-1308202010462300.pdf: 8326541 bytes, checksum: 06c9df99868f387af41976a2eb1369ec (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 v
圖表目錄 x
表目錄 xi
第一章 緒論 1
1-1 光催化二氧化碳還原 1
1-1-1 光催化二氧化碳還原之背景 1
1-1-2 光催化二氧化碳還原之條件 3
1-2 有機高分子於光催化二氧化碳還原 7
1-2-1 多孔有機聚合物(Porous organic polymers, POPs) 7
1-3 研究動機 22
第二章 結果與討論 24
2-1 材料合成與結構鑑定 24
2-1-1 線性高分子 24
2-1-2 COFs材料 28
2-2 材料的光物理性質和電化學性質 32
2-2-1紫外光–可見光光譜 32
2-2-2循環伏安法 34
2-2-3螢光光譜與時間解析螢光光譜 36
2-3 材料的表面性質分析 39
2-3-1 掠角入射廣角X光散射分析 39
2-3-2 接觸角量測 45
2-3-3 比表面積量測與粗糙度量測 46
2-4 材料的光催化效率比較 48
2-5 光催化二氧化碳還原之機制探討 53
第三章 結論 57
第四章 實驗方法 58
4-1試藥 58
4-2 實驗儀器 58
4-3 光催化實驗方法 60
4-3-1 樣品製備 60
4-3-2 實驗架設 61
4-3-3 氣體定量 61
4-4 DFT理論計算 62
4-5合成步驟 62
第五章 文獻 74
第六章 附錄 80
dc.language.isozh-TW
dc.subject反應機制zh_TW
dc.subject二氧化碳還原反應zh_TW
dc.subject光催化反應zh_TW
dc.subject有機高分子zh_TW
dc.subject予體受體交互作用zh_TW
dc.subjectphotocatalytic reactionen
dc.subjectCO2 reductionen
dc.subjectreaction mechanismen
dc.subjectdonor-acceptor interactionen
dc.subjectorganic polymersen
dc.title萘雙亞醯胺與芴衍生物於光催化二氧化碳還原反應zh_TW
dc.titlePhoto-induced CO2 Reduction Catalyzed by Naphthalene Diimide and Fluorene Derivativesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾博文(Po-Wen Chung),陳浩銘(Hao-Ming Chen),吳紀聖(Chi-Sheng Wu)
dc.subject.keyword二氧化碳還原反應,光催化反應,有機高分子,予體受體交互作用,反應機制,zh_TW
dc.subject.keywordCO2 reduction,photocatalytic reaction,organic polymers,donor-acceptor interaction,reaction mechanism,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202003208
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202010462300.pdf
  未授權公開取用
8.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved