Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁作新(Tzou-Shin Ueng)
dc.contributor.authorGuan-Lin Huangen
dc.contributor.author黃冠霖zh_TW
dc.date.accessioned2021-06-15T11:09:41Z-
dc.date.available2019-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-10-18
dc.identifier.citationBang, S. (1985). 'Active earth pressure behind retaining walls.' Journal of Geotechnical Engineering, ASCE, Vol. I l l, No. 3, Mar., pp. 407-412
.
Brooker, E. W. and H. O. Ireland (1965). 'Earth pressures at rest related to stress history.' Canadian geotechnical journal 2(1): 1-15.

Chen, T.-J. and Y.-S. Fang (2008). 'Earth pressure due to vibratory compaction.' Journal of geotechnical and geoenvironmental engineering , ASCE,134(4): 437-444.

Das, B. M. and K. Sobhan (2013). 'Principles of geotechnical engineering,' Cengage Learning, SI, pp426.
Evans, C. H. (1984). “An examination of arching in granular soils.” S.M.thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.
Fang, Y., Chen, J., and Chen C. (1997). 'Earth pressures with sloping backfill.' Journal of geotechnical and geoenvironmental engineering , ASCE,123(3): 250-259.

Fang, Y.-S. and I. Ishibashi (1986). 'Static earth pressures with various wall movements.' Journal of Geotechnical Engineering, ASCE, 112(3): 317-333.

Handy, R. L. (1985). 'The arch in soil arching.' Journal of Geotechnical Engineering , ASCE,111(3): 302-318.

Hanna, A. and R. Al-Romhein (2008). 'At-rest earth pressure of overconsolidated cohesionless soil.' Journal of geotechnical and geoenvironmental engineering, ASCE, 134(3): 408-412.

Hanna, A. and A. Ghaly (1992). 'Effects of K 0 and Overconsolidation on Uplift Capacity.' Journal of Geotechnical Engineering , ASCE,118(9): 1449-1469.

Hummel, F. and E. Finnan (1921). 'The distribution of pressure on surfaces supporting a mass of granular material.' Minutes of the Proceedings of the Institution of Civil Engineers, Thomas Telford-ICE Virtual Library.
Jaky, J. (1944). 'The coefficient of earth pressure at rest.' Journal of the Society of Hungarian Architects and Engineers 78(22): 355-358.

Lewis, M., Donnelly, M., and Young, L. (1985). 'Discussion of “Ka and KO Behind Rotating and Non-Yielding Walls” by Mehmet Sherif, Yung-Show Fang, and Russell I. Sherif (January, 1984).' Journal of Geotechnical Engineering , ASCE,111(8): 1039-1041.

Mesri, G. and T. Hayat (1993). 'The coefficient of earth pressure at rest.' Canadian geotechnical journal , 30(4): 647-666.

Michalowski, R. L. (2005). 'Coefficient of earth pressure at rest.' Journal of geotechnical and geoenvironmental engineering , ASCE,131(11): 1429-1433.

Michalowski, R. L. (2005). 'Coefficient of earth pressure at rest.' Journal of geotechnical and geoenvironmental engineering , ASCE,131(11): 1429-1433.

Sherif, M., Fang, Y., and Sherif, R. (1984). 'Ka and Ko Behind Rotating and Non-Yielding Walls.' Journal of Geotechnical Engineering , ASCE,110(1): 41-56.

Terzaghi, K. (1936). “Stress distribution in dry and saturated sand above a yielding trap-door.” Proc., 1st Int. Conf. on Soil Mechanics and Foundation Engineering, Graduate School of Engineering, Harvard Univ.,Cambridge, MA, 307–311..
Terzaghi, K. (1943). Theoretical soil mechanics, Wiley, New York
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48812-
dc.description.abstract本研究以不同滲流情況考慮孔隙水壓的變化,使用滲流儀施加向上滲流,藉以造成孔隙水壓的變化,並搭配水壓計、土壓計、流量計與資料擷取系統,量測孔隙水壓力變化時側向土壓力的變化。然後計算不同水壓力變化情況下的靜止土壓力係數。
實驗結果顯示,孔隙水壓比ru值在0到0.4之間,側向有效應應力的變化並不大,推測是受到顆粒互鎖(interlocking)的影響所導致。但ru值在0.4以上時,側向有效應應力下降幅度明顯,表示顆粒互鎖的消失。
由於側向有效應力有顆粒互鎖的影響,孔隙水壓力增加,垂直有效應力降低,而側向有效應力的變化不大。因此所計算出來的Ko值會增大。現地土層因孔隙水壓增加,Ko值可達1.0以上。
Jaky公式中所預測的Ko值與量測值接近,但是在水壓力變化下,Ko會隨著水壓力變化而變化,因此Jaky公式可能不適用於水壓力變化的情況。以Mayne and Kulhawy所提出針對過壓密土壤Ko值的修正式計算不同過壓密比(OCR)的Ko值,與量測結果接近,適用於過壓密土壤。
zh_TW
dc.description.abstractIn this study, changes of pore water pressure were induced by applying upward water flow with a permeameter. Water pressure transducers, soil pressure transducers, flow meter and data acquisition system were used to measure the changes of lateral earth pressure. The coefficient of earth pressure at rest in different seepage conditions can then be calculated.
Experimental results showed that lateral effective stress did not change much for pore pressure ratio ru from 0 to 0.4. The particles may be subjected to interlocking during pore pressure changes. However, for the value of ru over 0.4, effective lateral stress declined clearly. It indicated that the particle interlocking might disappear under a higher excess pore pressure.
The vertical effective stress decrease with increasing pore water pressure. But the lateral effective stress changes little due to the effect of the particle interlocking on the lateral effective stress. As a result, the Ko value increases when pore pressure increases. In the field, the Ko value can reach over 1.0 due to increasing of pore water pressure.

The Ko value predicted by Jaky formula is close to the measured value in this study. The value of Ko changes with changing pore water pressure, so Jaky formula does not suitable in the condition when pore water pressure changes. For over-consolidated soil, the measuring value is close to the predictive value according to the relation proposed by Mayne and Kulhawy for various values of OCR.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:41Z (GMT). No. of bitstreams: 1
ntu-105-R03521126-1.pdf: 4851623 bytes, checksum: 90b40a588ca90e9bf39e985b8c0e826c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 V
表目錄 XI
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容與方法 2
第二章 文獻回顧 3
2-1 土壓力理論 3
2-1-1 靜止土壓力 4
2-2 擋土牆試驗之相關研究 5
2-3 土壤的拱效應 7
2-4 總結 8
第三章 試驗內容 20
3-1 試驗土樣之基本物理性質 20
3-2 滲流與土壓量測試驗設備 20
3-2-1 滲流儀 20
3-2-2 供水系統 21
3-2-3 儀器和資料擷取系統 21
3-3 儀器校正 22
3-4 試驗流程 23
3-4-1 儀器架設 23
3-4-2 砂試體準備 24
3-4-3 滲流與土壓量測 25
3-5 非黏性土排水直接剪力強度試驗 25
3-5-1 試體準備與安裝 25
第四章 試驗結果 42
4-1 試驗結果 42
4-1-1 土壓計深度5 cm 42
4-1-2 土壓計深度15 cm 44
4-2 靜止土壓力係數Ko的變化 45
4-2-1 未扣除摩擦力Ko的變化 45
4-2-2 扣除摩擦力Ko的變化 47
4-3 計算砂土的滲透係數 48
4-4 與現行靜止土壓力公式比較 49
第五章 結論與建議 76
5-1 結論 76
5-2 建議 77
參考文獻 78
dc.language.isozh-TW
dc.subject孔隙水壓比zh_TW
dc.subject顆粒互鎖zh_TW
dc.subject側向土壓力zh_TW
dc.subject靜止土壓力係數zh_TW
dc.subjectlateral earth pressureen
dc.subjectcoefficient of earth pressure at resten
dc.subjectpore pressure ratioen
dc.subjectinterlockingen
dc.title飽和砂土孔隙水壓變化對側向靜止土壓力之影響zh_TW
dc.titleThe effect of pore pressure change on lateral earth pressure at rest in saturated sanden
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.coadvisor葛宇甯(Louis Ge)
dc.contributor.oralexamcommittee李崇正(Chung-Jung Lee)
dc.subject.keyword側向土壓力,顆粒互鎖,孔隙水壓比,靜止土壓力係數,zh_TW
dc.subject.keywordlateral earth pressure,interlocking,pore pressure ratio,coefficient of earth pressure at rest,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201602887
dc.rights.note有償授權
dc.date.accepted2016-10-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved