Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬(Yih-Peng Chiou)
dc.contributor.authorShi-Kang Tsengen
dc.contributor.author曾士綱zh_TW
dc.date.accessioned2021-06-15T11:09:40Z-
dc.date.available2025-08-01
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation[1] S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs. Hoboken, NJ, USA: Wiley, 2009.
[2] T.-L. Wu, F. Buesink, and F. Canavero, “Overview of signal integrity and EMC design technologies on PCB: fundamentals and latest progress,” IEEE Trans. Electromagn. Compat., vol. 55, no. 4, pp.624–638, Aug. 2013.
[3] D. M. Hockanson, “Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables,” IEEE Trans. Electromagn. Compat., vol. 38, no. 4, pp. 557–566, Nov. 1996.
[4] X. Duan, B. Archambeault, H.-D. Bruens, and C. Schuster, “EM emission of differential signals across connected printed circuit boards in the GHz range,” in Proc. IEEE Int. Symp. Electromagn. Compat. (EMC), pp. 50–55, Aug. 2009.
[5] Thin wave absorber Mitsubishi [online]. Available:http://www.mitsubishi-cable.co.jp/ja/products/group/wireless/ram_b.html
[6] P. Munaga, S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, “An Ultra-thin dual band polarization-independent metamaterial absorber for EMI/EMC application,” in Antennas and Propagation EuCAP, Lisbon., 2015, pp.2164-3342.
[7] F. Costa, S. Genovesi, and A. Monorchio, “A frequency selective absorbing ground plane for low- RCS microstrip antenna arrays,” Prog. Electromagn.Res., vol. 126, pp. 317-332, 2012.
[8] S. Ghosh, S. Bhattacharyya, K. V. Srivastava, “Design characterization and fabrication of a broadband polarization-insensitive multi-layer circuit analogue absorber,” IET Microw. Antennas Propag., vol. 10, pp. 850–855, 2016.
[9] F. Hu, L. Wang, B. Quan, X. Xu, Z. Li Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys., vol. 46, pp. 195103, 2013.
[10] B. Chambers, “Frequency tuning characteristics of capacitively loaded Salisbury screen radar absorber,” Electron. Lett., vol. 30, no. 19, pp. 1626–1628, Sep. 1994.
[11] E. F. Knott and C. D. Lunden, “The two-sheet capacitive Jaumann absorber,” IEEE Trans. Antenn. Propag., vol. 43, no. 11, pp. 1339–1343, Nov. 1995.
[12] B. A. Munk, Frequency Selective Surfaces: Theory and Design. John Wiley Sons, 2005.
[13] Y.-Q. Ye, Y. Jin, and S. He, “Omnidirectional polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B , vol. 27, pp. 498-504, 2010.
[14] J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive broadband terahertz metamaterial absorber,” Opt. Lett., vol. 36, pp. 3476-3478, 2011.
[15] M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas and Wireless Propa. Lett., vol. 11, pp. 748-751, 2012.
[16] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag., vol. 58, no.5,pp. 1551–1558, 2010.
[17] L.-K. Sun, H.-F. Cheng, Y.-J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” OSA Opti.Expres., vol. 20, No.4, pp.4675-4680, 2012.
[18] B. Kearney, F. Alves,D.Grbovic, and G. Karunasiri, “Terahertz metamaterial absorber with an embedded resistive layer,” Opt. Matt. Express, vol. 3, pp. 1020-1025, 2013.
[19] F. Costa, A. Kazemzadeh, S. Genovesi, and A. Monorchio, “Electromagnetic absorbers based on frequency selective surfaces,” Forum for Elec. Res. Meth. and Appl. Tech. (FERMAT) ,2014.
[20] A. Kazemzadeh, “Nonmagnetic ultra-wideband absorber with optimal thickness,” IEEE Trans. Antenn. Propaga., vol. 59, no. 1, pp. 135–140, 2011.
[21] A. P. Feresidis, G. Goussetis, W. Shenhong, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 209-215, 2005.
[22] S. D. Rogers, “Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2495-2505, 2005.
[23] Y. Pang, H. Cheng, Y. Zhou, Z. Li, and J. Wang, “Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates,” Opt. Express, vol. 20, no. 11, pp. 12515–12520, 2012.
[24] J. Berenger, “A perfectly matched layer for the absorption of electromagnetic wave,” J. of Compt. Phys., Vol. 114, No. 2, pp. 185-200, 1994.
[25] A. Taflove and S. C. Hagness, Computational Electrodynamics: The FDTD method 5th ed., Artech House Publish, 2007
[26] P.-J. Li, C.-H. Cheng, Y.-C. Tseng, and T.-L. Wu, 'Novel absorptive design of common-mode filter at desired frequency band,' in IEEE 20th Workshop on Signal and Power Integrity (SPI), Turin, Italy, 23 June 2016.
[27] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248–250, Apr. 2008.
[28] W. Zhuang, Y. Shi, W. Tang, and Y. Dai, “Common-mode suppression design of gigahertz differential signals based on C-slotline,” Prog. In. Electromagn. Res.C, vol. 61, pp. 17–26, Jour. 2016.
[29] P. Velez, M. Duran-Sindreu, J. Naqui, J. Bonache and F. Martin, “Common-mode suppressed differential bandpass filter based on open complementary split ring resonators fabricated in microstrip technology without ground plane etching,” Microw. And Opti. Techn Lett.., vol. 56, pp. 910-916, 2014.
[30] J. Naqui, A. Fernández-Prieto, M. Durán-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martín, “Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3023–3034, Oct. 2012.
[31] C. Olivieri, F. D. Paulis, A. Orlandi, and S. Koziel, “Performance optimization of EBG-based common mode filters for signal integrity applications,” Simula.-Driv. Mod. and Optimi., vol. 153, pp. 111-133, Feb. 2016.
[32] Q. Liu, G. Li, V. Khilkevich, and D. Pommerenke, “Common-Mode filters with interdigital fingers for harmonics suppression and lossy Materials for broadband suppression,” IEEE Transm. On Electromagn. Compat., vol. 57, no. 6, Dec. 2015
[33] D.-B. Lin, Y.-C. Chen, C.-T. Wu, “A broadband filter design for common-mode noise suppression with multilayer mushroom structure in differential transmission line,” in IEEE Int. Symp. on Elec. Compa. Signal/Power Integrity (EMCSI), Washington, DC, USA, pp.310-315, 23 Oct. 2017.
[34] P.-J. Li, Y.-C. Tseng, C.-H. Cheng, and T.-L. Wu, “A novel absorptive common-mode filter for cable radiation reduction,” IEEE Trans. On Compon. Pack. And Manuf. Techo., vol. 7, no. 4, Apr. 2017.
[35] C.-Y. Hsiao, C.-H. Cheng, and T.-L. Wu, “A new broadband CM noise absorption circuit for high-speed differential digital systems,” IEEE Trans. Microw. Theory Techn., vol.63, no.6, pp. 1894-1901, Jun. 2015.
[36] M.-K. Khandelwal, B.-K. Kanaujia, and S. Kumar, “Defected ground structure: fundaments analysis applications in modern wireless trends,” Internatio. Journ. Of Anten. And Propaga. vol. 2017, pp. 22. Feb. 2017.
[37] S.-J. Wu, H.-H. Chuang, T.-K. Wang, and T.-L. Wu, “A novel HU-shaped common-mode filter for GHz differential signals,” in Proc. IEEE Int. Electromagn. Compat. Symp., Aug. 2008, pp. 1–4.
[38] X.-K. Gao, H.-M. Lee, and S.-P. Gao, “A robust parameter design of wide band DGS filter for common mode noise mitigation in high-speed electronics,” IEEE Trans. on Electromagn. Compon. Vol. 59, no.6, pp. 1735-1739. Dec. 2017.
[39] R. Liu, A. Degiron, J. J. Mock, D. R. Smith,” Negative index materials composed of electric and magnetic resonators” App. Phys. Lett., vol. 90, pp. 203504, 2007.
[40] J.-Y. Shao, and Y.-S. Lin, “Narrowband coupled-line band-stop filter with absorptive stop-band,” IEEE Trans. on Microwave Theo. and Tech. , vol. 63, no. 10, pp. 3469-3478, 2015.
[41] Y. Morimoto, “A multi-harmonic absorption circuit using quasi-multilayered strip lines for RF power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 1, pp. 109-118, 2017.
[42] C. Birdsall and R. White, “Experiments with forbidden regions of open periodic structures: application to absorptive filters. IEEE Trans,” Microw. Theory Tech., vol. 12, no. 2, pp. 197–202, 1964.
[43] J. Lee, B. Kim, K. Lee, and W. J. Chappell, “Bandwidth-enhanced lumped-element absorptive band-stop filter topology and its application to LTCC band-stop filter design,” International Journal of Microwave and Wireless Technologies, vol. 7, no. 06, pp. 691-698, 2014.
[44] D. Psychogiou, R. Mao, and D. Peroulis, “Series-cascaded absorptive notch-filters for 4G-LTE radios,” 2015 IEEE Radio and Wireless Symposium, pp. 177-179, 2015.
[45] S.-H. Chien and Y.-S. Lin, “Novel wideband absorptive bandstop filters with good selectivity,” IEEE Access, vol. 5, pp. 18847-18861, 2017.
[46] A. Fernandez-Prieto1, J. Martel1, F. Medina1, F. Mesa1, S. Qian, J.-S. Hong, J. Naqui, and F. Martn, “Dual-band differential filter using broadband common-mode rejection artificial transmission line,” Prog. in Electromagn. Res., vol. 139, pp. 779-797,May 2013
[47] T.-L. Wu, F. Buesink, and F. Canavero, “Overview of signal integrity and EMC design technologies on PCB: fundamentals and latest progress,” IEEE Trans. Electromagn. Compat., vol. 55, no. 4, pp.624–638, Aug. 2013.
[48] M. Kim and D. G. Kam, “A wideband and compact EBG structure with a circular defected ground structure,” IEEE Trans. on Comp., Packaging and Manufa. Tech., vol. 4, no. 3, pp. 496-503, 2014.
[49] S. Clavijo, R. E. Diaz, and W. E. McKinzie, “Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. on Antennas and Propaga., vol. 51, no. 10, pp. 2678-2690, 2003.
[50] M. Li, Q. L. Li, B. Wang, C. F. Zhou, and S. W. Cheung, “A low-profile dual-polarized dipole antenna using wideband AMC reflector,” IEEE Trans. on Antennas and Propa., vol. 66, no. 5, pp. 2610-2615, 2018.
[51] Y. Fan and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2936-2946, 2003.
[52] A. L. T. I. C. Caloz, “Composite right/left-handed transmission metamaterials,” IEEE Microwave Magazine, vol. 5, no. 3, pp. 34 - 50, 2004.
[53] Y. Horii, “A compact band elimination filter composed of a mushroom resonator embedded in a microstrip line substrate,” 2005 Asia-Pacific Microwave Conference Proceedings, vol. 3, pp. 1-4, Dec.2005.
[54] S. D. Rogers, “Electromagnetic-band gap layers for broad-band suppression of TEM modes in power planes,” IEEE Trans. on Microwave Theo. and Tech., vol. 53, no. 8, pp. 2495-2505, 2005.
[55] 許淯翔, 建構於蘑菇狀電磁能隙之吸收性帶阻濾波器, 國立台灣大學碩士論文, 2018年7月.
[56] C.-H. Tsai, and T.-L. Wu, 'A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials,' IEEE Trans. Microw. Theory Techn., vol.58, no. 1, pp. 195-201, 2010.
[57] C.Y. Hsiao, C.-H. Tsai, C.-N. Chiu, T.-L. Wu, “Radiation suppression for cable-attached packages utilizing a compact embedded common mode filters”, IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 10, pp. 1696-1703, Oct. 2012.
[58] Q. Liu, G. Li, V. Khilkevich, and D. Pommerenke, 'Common-mode filters with interdigital fingers for harmonics suppression and lossy materials for broadband suppression,' IEEE Trans. On Elec. Compa., vol. 57, no. 6, Dec. 2015.
[59] S.-J. Wu, C.-H. Tsai, and T.-L. Wu, “A novel wideband common-mode suppression filter for GHz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 4, pp. 848–855, Apr. 2009.
[60] 王天昱, 寬頻縮小化電磁能隙結構之設計, 國立台灣大學碩士論文, 2017年6月.
[61] M. A. Morgan, T. A. Boyd, “Reflectionless filter structures,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1263-1271, Apr. 2015.
[62] P.-J. Li, C.-H. Cheng, and T.-L. Wu, “A resistor-Free absorptive common-mode filter using gap-coupled resonator,” IEEE Microwave and Wireless Compon. Lett., vol. 28, no. 10, pp. 885-887, Oct. 2018.
[63] P.-J. Li and T.-L. Wu, “Synthesized method of dual-band common-Mode noise absorption circuits,” IEEE Trans. Microwave Theo. and Tech., vol. 67, no. 4, pp. 1392-1400, 2019.
[64] W. Zhang, Y. Wu, IEEE, Y. Liu, C. Yu, A. Hasan, and F. M. Ghannouchi, “Planar wideband differential-mode band-pass filter with common-mode noise absorption,” IEEE Microwave and Wireless Compon. Lett., vol. 27, no. 5, pp. 458-460, 2017.
[65] C.-H. Cheng, and T.-L. Wu, “Analysis and design method of a novel absorptive common-mode filter,” IEEE Trans. Microwave Theo. and Tech., vol. 67, no. 5, pp. 1826-1834, 2019.
[66] B. C. Tseng, and L. K. Wu, “Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic,” IEEE Trans. Electromagn. Compat., vol. 46, no. 4, pp. 571-579, Nov. 2004.
[67] M. Kirschning, R. H. Jansen, and N. H. L. Koster, “Measurement and computer-aided modeling of microstrip discontinuities by an improved resonator method,” IEEE MTT-S International Microwave Symposium Digest, pp. 495-497, May 1983.
[68] N. H. L Koster and R. H. Jansen. 'The equivalent circuit of the asymmetrical series gap in microstrip and suspended substrate lines,' IEEE Trans. on Microw. Theory and Tech., vol. MTT-30, pp. 1273-1279, Aug. 1982.
[69] E. B. Rosa, and F. W. Grover, Formulas and Tables for the Calculation of Mutual and Self-Inductance. Washington Academy of Sciences, USA, 1911.
[70] Z. Piatek1, and B. Baron, “Self inductance of long conductor of rectangular cross section,” Prog. in Electromagn. Resea. M, vol. 26, pp. 225–236, 2012.
[71] G. Stojanovic, L. Živanov, and M. Damjanovic, “Compact form of expressions for inductance calculation of meander inductors,” Serbian Jour. of Elec. Engineer., vol. 1, no. 3, pp. 57 - 68, Nov. 2004.
[72] U.S. Department of Commerce, Circular of the Bureau of Standards C74: radio instruments and measurements. National Bureau of Standards, USA. pp. 273, 1937.
[73] K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propaga., vol. 48, no. 4, pp. 1230-1234, Aug. 2000.
[74] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz , “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, 2000.
[75] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett., vol. 95, pp. 203901, 2005.
[76] B. Zhang and B.I. Wu, “Cylindrical cloaking at oblique incidence with optimized finite multilayer parameters,” OSA Opt. Lett. , vol. 35, pp. 2681-2683, 2010.
[77] L.W. Chen and H.W. Wang, “Wide-angle absorber achieved by optical black holes using graded index photonic crystals,” J. Opt. Soc. Am. B., vol. 29, pp. 2222-2228, 2012.
[78] Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl., vol. 3, no. 3, pp. 037001, 2015.
[79] A. N. Papadimopoulos, N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, “Wide-angle absorption of visible light from simple bilayers,” Appl. Opti., vol. 56, no. 35, pp. 9779-9786, 2017.
[80] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber”, Phys. Rev. Lett., vol. 100, pp.207402, 2008.
[81] Y. Tsuda, T. Yasuzumi, and O. Hashimoto, “A thin wave absorber using closely placed divided conductive film and resistive film,” IEEE Antenn. Wirel. Propag. Lett. , vol. 10, pp. 892–895, 2011.
[82] B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 186–193, 2007.
[83] Y.-Q. Li, H. Zhang, Y.-Q. Fu, and N.-C. Yuan, “RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material,” IEEE Antennas Wirel. Propag. Lett. , vol. 7, pp. 473–476, 2008.
[84] Y. Cheng, Y.-N. Fan, Y. Nie, X. Wang, and R.-Z. Gong “An ultrathin wide-band planar metamaterial absorber based on fractal FSS and resistive film,” Chin. Phys. B, vol. 22, no. 6, PP. 067801, 2013.
[85] O. Hemmatyar, B. Rahmani, A. Bagheri, and A. Khavasi, “Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings,” IEEE J. Quantum Elect., vol. 53, no. 5, pp. 7000810, 2017.
[86] C. A. Valagiannopoulos, and S. A. Tretyakov, “Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics,” IEEE Trans. Antenn. Propaga., vol. 62, no. 10, pp. 5089-5098, 2014.
[87] O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3119–3125, 2009.
[88] S. Ogawa, D. Fujisawa, H. Hata, and M. Kimata, “Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterial incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications,” Photonics, vol. 3, no. 1, pp. 9, 2016.
[89] D. Lim, D. Lee, and S. Lim, 'Angle-and polarization-insensitive metamaterial absorber using via array,' Sci. Rep., vol. 6, pp. 39686, 2016.
[90] W. Withavachumnankul, and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photonics J., vol. 1, no. 2, pp. 101-118, 2009.
[91] A. Ourir, B. Gallas, L. Becerra, J. Rosny, and P. R. Dahoo, “Electromagnetically induced transparency in symmetric planar metamaterial at THz wavelengths,” Photonics, vol. 2, pp. 308-316, 2015.
[92] G. Duan, X. Zhao, S. W. Anderson, and X. Zhang, “Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials,” Nature Commun. Phys., vol. 2, no. 35, 2019.
[93] R. Sabri, A. Pourziad, and S. Nikmehr, “Highly directive switchable nanoantenna array based on dielectric omega particles at terahertz frequencies,” Appl. Opti., vol. 57, no. 9, pp. 2292-2298, 2018.
[94] F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano scale metal films for terahertz applications,” Opt. Eng. vol. 51, no. 6, pp. 063801, 2012.
[95] N. LamanD. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett., vol. 93, no. 5, pp. 051105, 2008.
[96] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Conden. Mat. , vol. 76, pp.4785-4809, 1998.
[97] J. B. Pendry, A. J. Holden, D. J. Robbins, amd W. J. Stewart, “Magnetism from conductors and enhanced nolinear phenomena,” IEEE Trans. On Microwav. And Tech., vol. 47, no. 11, pp. 2075-2083, 1999.
[98] I.-H. Lee, E.-S. Yu, S.-H. Lee, and S.-D. Lee, “Full-coloration based on metallic nanostructures through phase discontinuity in Fabry-Perot resonators, ” OSA Opt. Express, vol. 27, no. 23, pp. 33098-33110, 2019.
[99] F. Ruffino, and M. G. Grimaldi, “Nanostructuration of thin metal films by pulsed laser irradiations: A review,” Nanomaterials, vol. 9, no. 8, pp. 1133, 2019.
[100] M. Zhang, F. Zhang, Y. Ou, J. Cai,and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics, vol. 8, no. 1, pp. 117-126, 2018.
[101] J, Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, and X. Luo, “An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques,” IEEE Photonics J. ,vol. 10, no. 6, pp. 5901011, 2018.
[102] F. Bayatpur, K. Sarabandi, “Tuning performace of metamaterial-based frequency selective surface,” IEEE Trans. on Antenna and Propag., vol. 57, no. 2, 2009.
[103] F. Costa, C. Amabile, and A. Monorchio, “Waveguide dielectric permittivity measurement technique based on resonant FSS filter,” IEEE Microwave and Wireless Compon. Lett., vol. 21, no. 5, pp. 273-275, 2011.
[104] S. Cimen, “Novel closely spaced planar dual-band frequency-selective surface,” IET Microwave Anten. and Propag., vol. 7, pp.894-899, 2013.
[105] P. W. Hannan and M. A. Balfour, “Simulation of a phased array antenna in waveguide,” IEEE Trans. Antennas Propag., AP-13, 342, 1965.
[106] M. Fallah, A. Ghayekhloo, and A. Abdolali, “Design of frequency selective band stop shield using analytical method,” J. of Microw. Optoelectron. Electronmagn. Appl., vol. 14, pp.217-227, 2015.
[107] S. Zhou, Z. Wang and Y. Feng, “Optimal design of wideband absorber consisting of resistive meta-surface layers,” J. of Electromagn. Anal. Appl., vol. 4, pp. 187-191, 2012.
[108] S.-K. Tseng, H.-H. Hsiao, and Y.-P. Chiou, “Wide-angle wideband polarization-insensitive perfect absorber based on uniaxial anisotropic metasurfaces,” OSA Opt. Mater. Express, vol. 10, no. 5, pp. 1193-1203, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48810-
dc.description.abstract各向異性單軸完美匹配層(UPML)原本只是全波模擬(Full-Wave Simulation)上的一種數值技巧;使用理想完美匹配損耗性介質,用以近似無窮開放空間藉此節省計算資源的虛擬吸收器。實際上因為製程技術與材料科學的進步透過利用各種次波長的高阻抗性超穎材料來組合出於設計波段(如微波、兆赫波)作用的吸收器之設計,也因此才能在物理上實踐出近似UPML存在的吸收器。在此篇論文裡我們不僅研究且利用數值分析呈獻出基於UPML的概念,一個對極化低敏感度、近乎全角度入射性、且極寬頻寬的超穎材料吸收器並用於解決傳統吸收器在厚度與相異極化斜向入射時穩定性的相衝突問題,而且也另外研究並展示出多個寬頻吸收器設計的相關應用,例: 無輻射的缺陷接地面結構吸收性共模濾波器,吸收性帶止濾波器。在上述濾波器設計裡引入並使用吸收概念來取代傳統反射概念,可同時地改善傳統反射濾波器缺點以及解決其他潛在電磁相容與相干擾問題。在此篇論文裡提到各式吸收器應用設計,其吸收的部分頻寬(fractional bandwidth)至少皆超過100%以上。我們提出的各式應用設計皆能透過全波模擬跟實驗量測結果驗證其效能跟理論設計方法正確性。本論文提出各式吸收元件都是具備寬頻、低敏感度、輕盈、且低成本特性具有潛力應用在各個領域與波段其中包括電磁相容性元件、匿蹤科技、兆赫波成像與偵測。zh_TW
dc.description.abstractUniaxial perfect matching layer (UPML) was originally a practical full-wave numerical technique. A practicable physically UPML can be actually practiced through combing multiple sub-wavelength structures with high-impedance metamaterial absorber in THz region. In this dissertation the author doesn’t only investigate and present a polarization-insensitive nearly omnidirectional wideband terahertz metamaterial (MM) absorber inspired from UPML by numerical study to resolve the confliction between thickness and stability of conventionally thin absorber, but also demonstrates several wideband absorbers applications, such as absorptive band-stop filter, and radiation-less absorptive common-mode filter. The concept of absorption rather than reflection is used to solve the potential problems of traditional reflective band-stop filters, while improving the original defects. The fractional bandwidth of absorption of each proposed designs all are exceeded to 100% at least in this dissertation. Both simulation and measurement results verify the performance and confirm the methodology for each proposed applied designs. These proposed absorptive devices which are wide-band, light-weighted and simplify low-cost have potential in various applications including EMC/EMI device, stealth technology, THz imaging and bolometric detector.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:40Z (GMT). No. of bitstreams: 1
U0001-1308202011113500.pdf: 5562800 bytes, checksum: ea7ac66016668a45b02306c4ad63cbab (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Chapter 1: Introduction 1
1.1. Motivation 1
1.2. Literature review 4
1.3. Contribution 14
1.4. Dissertation outline 16
Chapter 2: Absorptive Band-Stop Filters Based on Miniaturized Mushroom Structure 17
2.1. Introduction: Literature review of ABSF 17
2.2. Design methodology and equivalent circuit model 21
2.3. Simulation prediction 28
2.4. Experimental measurement and performance compassion 29
2.5. Summary 32
Chapter 3: Wideband Absorptive Common Mode Filter Based on Miniaturized Defected Ground Structure 33
3.1. Introduction: Literature review of DGS and CMF 33
3.2. Introduction: Absorptive CMF 36
3.3. Contribution 37
3.4. Design, simulation and equal circuit model 40
3.5. Experimental validation 55
3.6. Discussion 58
3.7. Summary 61
Chapter 4: Polarization-Insensitive Wide-Angle, Wide-Band Meta-Surface Absorber Inspired From Uni-axial Perfect Matching Layer 63
4.1. Introduction: FSS and metamaterial absorber 63
4.2. Contribution 69
4.3. Basic mechanism of UPML absorber 70
4.4. FSS absorber inspired from UPML 73
4.5. Full-wave simulation result of FSS absorber inspirited from UPML 80
4.6. Compendium 90
4.7. Microwave measurement 90
4.8. Summary 101
Chapter 5: Conclusion 102
References 105
dc.language.isoen
dc.subject超穎材料zh_TW
dc.subject吸收器zh_TW
dc.subject缺陷接地面結構zh_TW
dc.subject共模濾波器zh_TW
dc.subject帶止濾波器zh_TW
dc.subjectCommon mode filteren
dc.subjectMetamaterialen
dc.subjectFSSen
dc.subjectDGSen
dc.subjectabsorberen
dc.subjectUPMLen
dc.title廣頻吸收性濾波和受UPML概念啟發廣角寬頻吸收性頻率選擇面吸收器zh_TW
dc.titleWide-angle and Wideband FSS Absorbers Inspired from UPML and Wideband Absorptive Filtersen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-8276-567X
dc.contributor.advisor-orcid邱奕鵬(0000-0002-2009-9162)
dc.contributor.oralexamcommittee吳宗霖(Tzong-Lin Wu),邱政男(Cheng-Nan Chiu),蕭惠心(Hui-Hsin Hsiao),賴志賢(Chih-Hsien Lai)
dc.contributor.oralexamcommittee-orcid,邱政男(0000-0002-3904-2780),蕭惠心(0000-0002-9483-8191),賴志賢(0000-0002-6878-3596)
dc.subject.keyword超穎材料,共模濾波器,帶止濾波器,吸收器,缺陷接地面結構,zh_TW
dc.subject.keywordMetamaterial,FSS,DGS,absorber,UPML,Common mode filter,en
dc.relation.page113
dc.identifier.doi10.6342/NTU202003210
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202011113500.pdf
  未授權公開取用
5.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved