Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48792
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李士傑
dc.contributor.authorI-Chen Hungen
dc.contributor.author洪苡蓁zh_TW
dc.date.accessioned2021-06-15T11:09:25Z-
dc.date.available2022-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-10-24
dc.identifier.citationBaker, L.P., Daggett, D.F., Peng, H.B., 1994. Concentration of pp125 focal adhesion
kinase (FAK) at the myotendinous junction. J Cell Sci 107 ( Pt 6), 1485-1497.
Bjerke, M.A., Dzamba, B.J., Wang, C., Desimone, D.W., 2014. FAK is required for
tension-dependent organization of collective cell movements in Xenopus
mesendoderm. Dev Biol 394, 340-356.
Carvalho, L., Heisenberg, C.P., 2010. The yolk syncytial layer in early zebrafish
development. Trends in cell biology 20, 586-592.
Chang, F., Lemmon, C.A., Park, D., Romer, L.H., 2007. FAK potentiates Rac1
activation and localization to matrix adhesion sites: a role for betaPIX. Molecular
biology of the cell 18, 253-264.
Chatzizacharias, N.A., Kouraklis, G.P., Theocharis, S.E., 2010. The role of focal
adhesion kinase in early development. Histology and histopathology 25, 1039-1055.
Cheng, J.C., Miller, A.L., Webb, S.E., 2004. Organization and function of
microfilaments during late epiboly in zebrafish embryos. Dev Dyn 231, 313-323.
Crawford, B.D., Henry, C.A., Clason, T.A., Becker, A.L., Hille, M.B., 2003. Activity
and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative
roles during zebrafish morphogenesis. Molecular biology of the cell 14, 3065-3081.
Doherty, J.T., Conlon, F.L., Mack, C.P., Taylor, J.M., 2010. Focal Adhesion Kinase is
Essential for Cardiac Looping and Multichamber Heart Formation. Genesis 48, 492-
504.
Dohn, M.R., Mundell, N.A., Sawyer, L.M., Dunlap, J.A., Jessen, J.R., 2013. Planar
cell polarity proteins differentially regulate extracellular matrix organization and
assembly during zebrafish gastrulation. Dev Biol 383, 39-51.
Enomoto, A., Murakami, H., Asai, N., Morone, N., Watanabe, T., Kawai, K.,
Murakumo, Y., Usukura, J., Kaibuchi, K., Takahashi, M., 2005. Akt/PKB regulates
actin organization and cell motility via Girdin/APE. Developmental cell 9, 389-402.
Fonar, Y., Frank, D., 2011. FAK and WNT signaling: the meeting of two pathways in
cancer and development. Anti-cancer agents in medicinal chemistry 11, 600-606.
Fonar, Y., Gutkovich, Y.E., Root, H., Malyarova, A., Aamar, E., Golubovskaya, V.M.,
Elias, S., Elkouby, Y.M., Frank, D., 2011. Focal adhesion kinase protein regulates
Wnt3a gene expression to control cell fate specification in the developing neural
plate. Molecular biology of the cell 22, 2409-2421.
Fox, G.L., Rebay, I., Hynes, R.O., 1999. Expression of DFak56, a Drosophila
homolog of vertebrate focal adhesion kinase, supports a role in cell migration in vivo.
Proc Natl Acad Sci U S A 96, 14978-14983.
Frame, M.C., Patel, H., Serrels, B., Lietha, D., Eck, M.J., 2010. The FERM domain:
organizing the structure and function of FAK. Nature reviews. Molecular cell biology
11, 802-814.
Furuta, Y., Ilic, D., Kanazawa, S., Takeda, N., Yamamoto, T., Aizawa, S., 1995.
Mesodermal defect in late phase of gastrulation by a targeted mutation of focal
adhesion kinase, FAK. Oncogene 11, 1989-1995.
Georges-Labouesse, E.N., George, E.L., Rayburn, H., Hynes, R.O., 1996.
Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207,
145-156.
Hammerschmidt, M., Wedlich, D., 2008. Regulated adhesion as a driving force of
gastrulation movements. Development 135, 3625-3641.
Heisenberg, C.P., Solnica-Krezel, L., 2008. Back and forth between cell fate
specification and movement during vertebrate gastrulation. Current opinion in
genetics & development 18, 311-316.
Henry, C.A., Crawford, B.D., Yan, Y.L., Postlethwait, J., Cooper, M.S., Hille, M.B.,
2001. Roles for zebrafish focal adhesion kinase in notochord and somite
morphogenesis. Dev Biol 240, 474-487.
Holloway, B.A., Gomez de la Torre Canny, S., Ye, Y., Slusarski, D.C., Freisinger,
C.M., Dosch, R., Chou, M.M., Wagner, D.S., Mullins, M.C., 2009. A novel role for
MAPKAPK2 in morphogenesis during zebrafish development. PLoS genetics 5,
e1000413.
Hsu, C.L., Muerdter, C.P., Knickerbocker, A.D., Walsh, R.M., Zepeda-Rivera, M.A.,
Depner, K.H., Sangesland, M., Cisneros, T.B., Kim, J.Y., Sanchez-Vazquez, P.,
Cherezova, L., Regan, R.D., Bahrami, N.M., Gray, E.A., Chan, A.Y., Chen, T., Rao,
M.Y., Hille, M.B., 2012. Cdc42 GTPase and Rac1 GTPase act downstream of p120
catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Dev
Dyn 241, 1545-1561.
Iden, S., Collard, J.G., 2008. Crosstalk between small GTPases and polarity proteins
in cell polarization. Nat Rev Mol Cell Bio 9, 846-859.
Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S.,
Fujimoto, J., Okada, M., Yamamoto, T., 1995. Reduced cell motility and enhanced
focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539-
544.
Jessen, J.R., 2014. Recent advances in the study of zebrafish extracellular matrix
proteins. Dev Biol.
Kettleborough, R.N., Busch-Nentwich, E.M., Harvey, S.A., Dooley, C.M., de Bruijn,
E., van Eeden, F., Sealy, I., White, R.J., Herd, C., Nijman, I.J., Fenyes, F., Mehroke,
S., Scahill, C., Gibbons, R., Wali, N., Carruthers, S., Hall, A., Yen, J., Cuppen, E.,
Stemple, D.L., 2013. A systematic genome-wide analysis of zebrafish protein-coding
gene function. Nature 496, 494-497.
Kilian, B., Mansukoski, H., Barbosa, F.C., Ulrich, F., Tada, M., Heisenberg, C.P.,
2003. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish
gastrulation. Mechanisms of development 120, 467-476.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995.
Stages of Embryonic-Development of the Zebrafish. Dev Dynam 203, 253-310.
Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., Yasui,
W., Kikuchi, A., 2006. Expression of Wnt-5a is correlated with aggressiveness of
gastric cancer by stimulating cell migration and invasion. Cancer research 66, 10439-
10448.
Lai, S.L., Chan, T.H., Lin, M.J., Huang, W.P., Lou, S.W., Lee, S.J., 2008. Diaphanousrelated
formin 2 and profilin I are required for gastrulation cell movements. PloS one
3, e3439.
Lim, S.T., Chen, X.L., Lim, Y., Hanson, D.A., Vo, T.T., Howerton, K., Larocque, N.,
Fisher, S.J., Schlaepfer, D.D., Ilic, D., 2008. Nuclear FAK promotes cell proliferation
and survival through FERM-enhanced p53 degradation. Mol Cell 29, 9-22.
Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., Kikuchi, A., 2010. Binding of
APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating
cells. The EMBO journal 29, 1192-1204.
Matsumoto, S., Kikuchi, A., 2012. Regulation of focal adhesion dynamics by Wnt5a
signaling. Methods Mol Biol 839, 215-227.
Mitra, S.K., Hanson, D.A., Schlaepfer, D.D., 2005. Focal adhesion kinase: in
command and control of cell motility. Nature reviews. Molecular cell biology 6, 56-
68.
Mitra, S.K., Schlaepfer, D.D., 2006. Integrin-regulated FAK-Src signaling in normal
and cancer cells. Current opinion in cell biology 18, 516-523.
Moeller, M.L., Shi, Y., Reichardt, L.F., Ethell, I.M., 2006. EphB receptors regulate
dendritic spine morphogenesis through the recruitment/phosphorylation of focal
adhesion kinase and RhoA activation. The Journal of biological chemistry 281, 1587-
1598.
Myers, J.P., Robles, E., Ducharme-Smith, A., Gomez, T.M., 2012. Focal adhesion
kinase modulates Cdc42 activity downstream of positive and negative axon guidance
cues. J Cell Sci 125, 2918-2929.
Oteiza, P., Koppen, M., Krieg, M., Pulgar, E., Farias, C., Melo, C., Preibisch, S.,
Muller, D., Tada, M., Hartel, S., Heisenberg, C.P., Concha, M.L., 2010. Planar cell
polarity signalling regulates cell adhesion properties in progenitors of the zebrafish
laterality organ. Development 137, 3459-3468.
Peng, X., Wu, X., Druso, J.E., Wei, H., Park, A.Y., Kraus, M.S., Alcaraz, A., Chen, J.,
Chien, S., Cerione, R.A., Guan, J.L., 2008. Cardiac developmental defects and
eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK)
conditional knockout mice. Proc Natl Acad Sci U S A 105, 6638-6643.
Petridou, N.I., Stylianou, P., Christodoulou, N., Rhoads, D., Guan, J.L., Skourides,
P.A., 2012. Activation of endogenous FAK via expression of its amino terminal
domain in Xenopus embryos. PloS one 7, e42577.
Petridou, N.I., Stylianou, P., Skourides, P.A., 2013. A dominant-negative provides
new insights into FAK regulation and function in early embryonic morphogenesis.
Development 140, 4266-4276.
Quach, N.L., Rando, T.A., 2006. Focal adhesion kinase is essential for
costamerogenesis in cultured skeletal muscle cells. Dev Biol 293, 38-52.
Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, J.D., Joung, J.K., 2012.
FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol
30, 460-465.
Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G.,
Parsons, J.T., Horwitz, A.R., 2003. Cell migration: integrating signals from front to
back. Science 302, 1704-1709.
Ridyard, M.S., Sanders, E.J., 2001. Inhibition of focal adhesion kinase expression
correlates with changes in the cytoskeleton but not apoptosis in primary cultures of
chick embryo cells. Cell Biol Int 25, 215-226.
Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., Stainier, D.Y.,
2015. Genetic compensation induced by deleterious mutations but not gene
knockdowns. Nature 524, 230-233.
Roszko, I., Sawada, A., Solnica-Krezel, L., 2009. Regulation of convergence and
extension movements during vertebrate gastrulation by the Wnt/PCP pathway.
Seminars in cell & developmental biology 20, 986-997.
Schaller, M.D., Borgman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B., Parsons,
J.T., 1992. pp125FAK a structurally distinctive protein-tyrosine kinase associated with
focal adhesions. Proc Natl Acad Sci U S A 89, 5192-5196.
Schlaepfer, D.D., Mitra, S.K., 2004. Multiple connections link FAK to cell motility
and invasion. Curr Opin Genet Dev 14, 92-101.
Serrels, B., Serrels, A., Brunton, V.G., Holt, M., McLean, G.W., Gray, C.H., Jones,
G.E., Frame, M.C., 2007. Focal adhesion kinase controls actin assembly via a FERMmediated
interaction with the Arp2/3 complex. Nature cell biology 9, 1046-1056.
Shen, T.L., Park, A.Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., Flavell, R.A., Gu, H.,
Guan, J.L., 2005. Conditional knockout of focal adhesion kinase in endothelial cells
reveals its role in angiogenesis and vascular development in late embryogenesis. J
Cell Biol 169, 941-952.
Shiokawa, S., Yoshimura, Y., Nagamatsu, S., Sawa, H., Hanashi, H., Sakai, K.,
Noguchi, K., Nakamura, Y., 1998. Functional role of focal adhesion kinase in the
process of implantation. Mol Hum Reprod 4, 907-914.
Skoglund, P., Keller, R., 2010. Integration of planar cell polarity and ECM signaling
in elongation of the vertebrate body plan. Current opinion in cell biology 22, 589-596.
Solnica-Krezel, L., 2005. Conserved patterns of cell movements during vertebrate
gastrulation. Current biology : CB 15, R213-228.
Solnica-Krezel, L., Cooper, M.S., 2002. Cellular and genetic mechanisms of
convergence and extension. Results and problems in cell differentiation 40, 136-165.
Solnica-Krezel, L., Driever, W., 1994. Microtubule arrays of the zebrafish yolk cell:
organization and function during epiboly. Development 120, 2443-2455.
Spicer, O.S., Wong, T.T., Zmora, N., Zohar, Y., 2016. Targeted Mutagenesis of the
Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on
Reproductive Performance. PLoS One 11, e0158141.
Stylianou, P., Skourides, P.A., 2009. Imaging morphogenesis, in Xenopus with
Quantum Dot nanocrystals. Mechanisms of development 126, 828-841.
Takeshita, A., Iwai, S., Morita, Y., Niki-Yonekawa, A., Hamada, M., Yura, Y., 2014.
Wnt5b promotes the cell motility essential for metastasis of oral squamous cell
carcinoma through active Cdc42 and RhoA. International journal of oncology 44, 59-
68.
Talbot, J.C., Amacher, S.L., 2014. A streamlined CRISPR pipeline to reliably generate
zebrafish frameshifting alleles. Zebrafish 11, 583-585.
Thisse, C., Thisse, B., Schilling, T.F., Postlethwait, J.H., 1993. Structure of the
zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant
embryos. Development 119, 1203-1215.
Tsuda, S., Kitagawa, T., Takashima, S., Asakawa, S., Shimizu, N., Mitani, H., Shima,
A., Tsutsumi, M., Hori, H., Naruse, K., Ishikawa, Y., Takeda, H., 2010. FAK-mediated
extracellular signals are essential for interkinetic nuclear migration and planar
divisions in the neuroepithelium. J Cell Sci 123, 484-496.
Ulrich, F., Concha, M.L., Heid, P.J., Voss, E., Witzel, S., Roehl, H., Tada, M., Wilson,
S.W., Adams, R.J., Soll, D.R., Heisenberg, C.P., 2003. Slb/Wnt11 controls hypoblast
cell migration and morphogenesis at the onset of zebrafish gastrulation. Development
130, 5375-5384.
Webb, D.J., Donais, K., Whitmore, L.A., Thomas, S.M., Turner, C.E., Parsons, J.T.,
Horwitz, A.F., 2004. FAK-Src signalling through paxillin, ERK and MLCK regulates
adhesion disassembly. Nature cell biology 6, 154-161.
Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M.,
Slusarski, D.C., 2003. Wnt-5/pipetail functions in vertebrate axis formation as a
negative regulator of Wnt/beta-catenin activity. J Cell Biol 162, 889-898.
Yang, J.T., Bader, B.L., Kreidberg, J.A., Ullman-Cullere, M., Trevithick, J.E., Hynes,
R.O., 1999. Overlapping and independent functions of fibronectin receptor integrins
in early mesodermal development. Dev Biol 215, 264-277.
Yeh, C.M., Liu, Y.C., Chang, C.J., Lai, S.L., Hsiao, C.D., Lee, S.J., 2011. Ptenb
mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish. PloS one 6,
e18702.
Yoshizuka, N., Chen, R.M., Xu, Z., Liao, R., Hong, L., Hu, W.Y., Yu, G., Han, J.,
Chen, L., Sun, P., 2012. A novel function of p38-regulated/activated kinase in
endothelial cell migration and tumor angiogenesis. Mol Cell Biol 32, 606-618.
Zhang, P., Bai, Y., Lu, L., Li, Y., Duan, C., 2016. An oxygen-insensitive Hif-3alpha
isoform inhibits Wnt signaling by destabilizing the nuclear beta-catenin complex.
Elife 5.
Zhang, T., Yao, S., Wang, P., Yin, C., Xiao, C., Qian, M., Liu, D., Zheng, L., Meng,
W., Zhu, H., Liu, J., Xu, H., Mo, X., 2011. ApoA-II directs morphogenetic
movements of zebrafish embryo by preventing chromosome fusion during nuclear
division in yolk syncytial layer. The Journal of biological chemistry 286, 9514-9525.
Zhu, Y., Shen, T., Liu, J., Zheng, J., Zhang, Y., Xu, R., Sun, C., Du, J., Chen, Y., Gu,
L., 2013. Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell
migration in MCF-7 breast cancer cells. Cellular signalling 25, 1075-1085.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48792-
dc.description.abstract黏著斑激酶(focal adhesion kinase,FAK)在許多重要的細胞生理過程上扮演著重要的角色,其中包括了胚胎發育及器官發育等過程。儘管我們已知FAK在胚胎發育過程中的重要性,然究竟FAK如何調控早期胚胎發育,又如何在此一時期與其他訊息分子溝通的研究還是很有限。在本論文中,藉由比較fak1a與1b與人類FAK的氨基酸序列, 我發現兩者有高度的相似性。利用mopholino oligonucleotides (MO)抑制蛋白質生成,我觀察到魚胚(morphants)的外包作用(epiboly), 胚體趨中與延展作用(convergent extension)以及下胚層(hypoblast)細胞的移動都受到明顯的影響。藉由細胞的移植實驗, 我發現fak1a所調控的細胞移動受外界環境所影響,肌凝蛋白(filamentous actin,F-actin)在細胞外包作用時所產生的環狀構造(actin ring)在fak1a缺乏的胚胎是不完整的,進而推測其可能為導致胚外包作用缺失的原因。我同時也利用了CRISPR/Cas9的基因修改技術製作出了fak1a的突變魚(mutant),但僅有少部分胚有腔腸化缺陷的表型。然而在mutants與mophants我發現相同的基因有上升之趨勢,此顯示相似的細胞傳導路徑受到了影響,更重要的是我發現Wnt5b可能位於fak1a的上游調控下游路徑以調節細胞移動的過程。藉由mRNA拯救的實驗我發現其下游因子是small GTPase,Rac1與CDC42。總結,我首次在斑馬魚胚腔腸化過程中發現了FAK與WNT5b共同藉由調控Rac1與CDC42影響了肌凝蛋白之動態平衡以控制細胞移動現象。zh_TW
dc.description.abstractFocal adhesion kinase is known to mediate multiple vital cellular processes and be involved in embryogenesis and organ development. Despite its necessity, how FAK regulates and integrates with other cellular signals during early embryogenesis still remains poorly understood. Here, I first demonstrated the high sequence similarity of zebrafish fak1a and fak1b to human FAK. Using antisense morpholino (MO), I observed that the loss of Fak1a impaired epiboly, convergence and extension and hypoblast cell migration in a non cell-autonomous manner. Furthermore, I showed clear disturbance of the filamentous actin (F-actin) linkage bundles between actin-ring and yolk syncytial nuclei that appeared to affect epiboly in fak1a morphants. Genetic deletion of fak1a using CRISPR/Cas9 mediated gene editing reveals minor gastrulation defects than that of morphants, but some genes were induced both in morphants and mutants. It suggests that similar molecular pathways were affected. More importantly, I found that overexpression of fak1a or wnt5b mRNA could cross rescue convergence defects induced by wnt5b or fak1a MO, respectively. Both Wnt5b and Fak1a appeared to mediate gastrulation via Rac1 and Cdc42, since both small GTPases could synergistically rescue wnt5b and fak1a morphant phenotypes. Taken together, I demonstrate for the first time the missing functional interaction between Wnt and FAK signaling to mediate gastrulation cell movements via precise regulation of Rac1 and Cdc42 activities and subsequent actin dynamics.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:25Z (GMT). No. of bitstreams: 1
ntu-105-D99b41005-1.pdf: 4059343 bytes, checksum: c1783e38783a71039c79891ff36ff9ed (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 ................................................................................................................................... 4
ABSTRACT .................................................................................................................................. 5
Introduction .............................................................................................................................. 7
Materials and methods .......................................................................................................... 11
Zebrafish fak cloning and expression vector construction ...................................... 11
Immunofluorescence embryos staining .................................................................... 12
Cell transplantation ................................................................................................. 12
Immunoblotting ........................................................................................................ 13
Zebrafish maintenance and embryo culture ............................................................. 13
Microinjection .......................................................................................................... 14
Whole-mount in situ hybridization ........................................................................... 14
Rhodamine-phalloidin staining and confocal imaging analysis .............................. 15
Time-lapse DIC imaging and analysis ..................................................................... 15
Rac1 and Cdc42 activation assay ............................................................................ 16
Hae III mutagenesis assay and sequencing ............................................................. 17
Statistical analysis ................................................................................................... 18
Results ..................................................................................................................................... 18
Fak1a and Fak1b are maternally and ubiquitously expressed in zebrafish embryos
.................................................................................................................................. 19
Loss Fak1a and Fak1b causes gastrulation defects ................................................ 19
Loss of Fak1a and Fak1b causes convergence and extension defect ...................... 21
Loss of Fak1a causes reduction of cortical actin fibers and uneven distribution of
YSL nuclei ................................................................................................................ 22
Wnt5b act both upstream and parallel to Fak1a to regulate gastrulation .............. 26
CRISPR/Cas9 mediated fak1a deletion causes mild gastrulation defect ................. 28
Fak1a and Wnt5b cooperatively mediate gastrulation via modulating Rac1 and
Cdc42 ....................................................................................................................... 32
Discussion ................................................................................................................................ 34
Tables ...................................................................................................................................... 39
Table 1. Quantification of convergence and extension defects caused by fak1a tMO
and wnt5b tMO co-injection .................................................................................... 39
Table 2. Quantification of convergence and extension defects caused by wnt5b
tMO with or without fak1a mRNA co-injection ...................................................... 40
Table 3. Quantification of convergence and extension defects caused by fak1a tMO
with or without wnt5b mRNA co-injection .............................................................. 41
Table 4. Quantification of convergence and extension defects caused by fak1a tMO
in wild type or fak1a mutant background ................................................................ 42
Table 5. Primers and MOs used in this study .......................................................... 43
Table 6. Guiding RNA in this study ........................................................................ 44
Table 7. Sequences of fak1a mutants ...................................................................... 45
References ............................................................................................................................... 46
Figures ..................................................................................................................................... 55
Figure 1. fak1a expression pattern in zebrafish .................................................. 55
Figure 2. fak1a tMO2 causes dose-dependent and specific inhibition on epiboly
.................................................................................................................................. 56
Figure 3. Loss of fak1b causes dose-dependent and specific inhibition on
epiboly ..................................................................................................................... 58
Figure 4. Loss of Fak1a perturbs the synchronized migration of enveloping
and deep cell layers and F-actin network ............................................................ 60
Figure 5. Fak1a functions non cell-autonomously to regulate cell migration
during gastrulation ................................................................................................ 62
Figure 6. Fak1a overexpression rescues defects in wnt5b mutants and
morphants ............................................................................................................... 64
Figure 7. Knockdown of p53 could not rescued epiboly defect of wnt5b
morphants ............................................................................................................... 65
Figure 8. Fak1a and wnt5b showed no synergistic effect during gastrulation . 66
Figure 9. Fak1a is down-regulated in wnt5b morphants ................................... 68
Figure 10. Fak1a and wnt5b reciprocally rescue convergence defect caused by
antisense MO against each other .......................................................................... 69
Figure 11. Wnt5b partially rescued epiboly defect of fak1a morphants ........... 70
Figure 12. CRISPR/Cas9-mediated deletion of Fak1a resulted in minor defect
in gastrulation......................................................................................................... 72
Figure 13. CRISPR/cas9 mediated fak1a ablation causes minor effect on
gastrulation ............................................................................................................. 73
Figure 14. Fak1a deletion resulted in compensatory changes in fak1b and
wnt5b ....................................................................................................................... 75
Figure 15. CRISPR/cas9 mediated fak1a interference causes gastrulation
defect ....................................................................................................................... 76
Figure 16. CRISPR/cas9 mediated fak1b interference causes gastrulation
defect in F0 embryos .............................................................................................. 77
Figure 17. Low concentration of Rac1 and Cdc42 mRNA rescues wnt5b and
fak1a morphants during gastrulation .................................................................. 79
Figure 18. Rac1 and Cdc42 are downstream of wnt5b and fak1a during
gastrulation in zebrafish embryos ........................................................................ 81
Appendix Figures .................................................................................................................... 82
dc.language.isoen
dc.titleFak1a與Wnt5b經由Rac1與Cdc42聯合調控斑馬魚胚早期腔腸化時之細胞遷徙過程zh_TW
dc.titleFocal adhesion kinase 1a and Wnt5b cooperatively mediate gastrulation cell movements via Rac1 and Cdc42en
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee沈湯龍,鍾邦柱,鄭邑荃,黃聲蘋
dc.subject.keywordFAK,Wnt5b,Rac1,Cdc42,胚體趨中與延展作用,外包現象,腔腸化,斑馬魚,zh_TW
dc.subject.keywordFAK,Wnt5b,Rac1,Cdc42,convergent extension,epiboly,gastrulation,zebrafish,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201603706
dc.rights.note有償授權
dc.date.accepted2016-10-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
3.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved