請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48792
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李士傑 | |
dc.contributor.author | I-Chen Hung | en |
dc.contributor.author | 洪苡蓁 | zh_TW |
dc.date.accessioned | 2021-06-15T11:09:25Z | - |
dc.date.available | 2022-02-08 | |
dc.date.copyright | 2017-02-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-10-24 | |
dc.identifier.citation | Baker, L.P., Daggett, D.F., Peng, H.B., 1994. Concentration of pp125 focal adhesion
kinase (FAK) at the myotendinous junction. J Cell Sci 107 ( Pt 6), 1485-1497. Bjerke, M.A., Dzamba, B.J., Wang, C., Desimone, D.W., 2014. FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Dev Biol 394, 340-356. Carvalho, L., Heisenberg, C.P., 2010. The yolk syncytial layer in early zebrafish development. Trends in cell biology 20, 586-592. Chang, F., Lemmon, C.A., Park, D., Romer, L.H., 2007. FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Molecular biology of the cell 18, 253-264. Chatzizacharias, N.A., Kouraklis, G.P., Theocharis, S.E., 2010. The role of focal adhesion kinase in early development. Histology and histopathology 25, 1039-1055. Cheng, J.C., Miller, A.L., Webb, S.E., 2004. Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dyn 231, 313-323. Crawford, B.D., Henry, C.A., Clason, T.A., Becker, A.L., Hille, M.B., 2003. Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. Molecular biology of the cell 14, 3065-3081. Doherty, J.T., Conlon, F.L., Mack, C.P., Taylor, J.M., 2010. Focal Adhesion Kinase is Essential for Cardiac Looping and Multichamber Heart Formation. Genesis 48, 492- 504. Dohn, M.R., Mundell, N.A., Sawyer, L.M., Dunlap, J.A., Jessen, J.R., 2013. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation. Dev Biol 383, 39-51. Enomoto, A., Murakami, H., Asai, N., Morone, N., Watanabe, T., Kawai, K., Murakumo, Y., Usukura, J., Kaibuchi, K., Takahashi, M., 2005. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Developmental cell 9, 389-402. Fonar, Y., Frank, D., 2011. FAK and WNT signaling: the meeting of two pathways in cancer and development. Anti-cancer agents in medicinal chemistry 11, 600-606. Fonar, Y., Gutkovich, Y.E., Root, H., Malyarova, A., Aamar, E., Golubovskaya, V.M., Elias, S., Elkouby, Y.M., Frank, D., 2011. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate. Molecular biology of the cell 22, 2409-2421. Fox, G.L., Rebay, I., Hynes, R.O., 1999. Expression of DFak56, a Drosophila homolog of vertebrate focal adhesion kinase, supports a role in cell migration in vivo. Proc Natl Acad Sci U S A 96, 14978-14983. Frame, M.C., Patel, H., Serrels, B., Lietha, D., Eck, M.J., 2010. The FERM domain: organizing the structure and function of FAK. Nature reviews. Molecular cell biology 11, 802-814. Furuta, Y., Ilic, D., Kanazawa, S., Takeda, N., Yamamoto, T., Aizawa, S., 1995. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. Oncogene 11, 1989-1995. Georges-Labouesse, E.N., George, E.L., Rayburn, H., Hynes, R.O., 1996. Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207, 145-156. Hammerschmidt, M., Wedlich, D., 2008. Regulated adhesion as a driving force of gastrulation movements. Development 135, 3625-3641. Heisenberg, C.P., Solnica-Krezel, L., 2008. Back and forth between cell fate specification and movement during vertebrate gastrulation. Current opinion in genetics & development 18, 311-316. Henry, C.A., Crawford, B.D., Yan, Y.L., Postlethwait, J., Cooper, M.S., Hille, M.B., 2001. Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. Dev Biol 240, 474-487. Holloway, B.A., Gomez de la Torre Canny, S., Ye, Y., Slusarski, D.C., Freisinger, C.M., Dosch, R., Chou, M.M., Wagner, D.S., Mullins, M.C., 2009. A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS genetics 5, e1000413. Hsu, C.L., Muerdter, C.P., Knickerbocker, A.D., Walsh, R.M., Zepeda-Rivera, M.A., Depner, K.H., Sangesland, M., Cisneros, T.B., Kim, J.Y., Sanchez-Vazquez, P., Cherezova, L., Regan, R.D., Bahrami, N.M., Gray, E.A., Chan, A.Y., Chen, T., Rao, M.Y., Hille, M.B., 2012. Cdc42 GTPase and Rac1 GTPase act downstream of p120 catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Dev Dyn 241, 1545-1561. Iden, S., Collard, J.G., 2008. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Bio 9, 846-859. Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., Yamamoto, T., 1995. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539- 544. Jessen, J.R., 2014. Recent advances in the study of zebrafish extracellular matrix proteins. Dev Biol. Kettleborough, R.N., Busch-Nentwich, E.M., Harvey, S.A., Dooley, C.M., de Bruijn, E., van Eeden, F., Sealy, I., White, R.J., Herd, C., Nijman, I.J., Fenyes, F., Mehroke, S., Scahill, C., Gibbons, R., Wali, N., Carruthers, S., Hall, A., Yen, J., Cuppen, E., Stemple, D.L., 2013. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496, 494-497. Kilian, B., Mansukoski, H., Barbosa, F.C., Ulrich, F., Tada, M., Heisenberg, C.P., 2003. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mechanisms of development 120, 467-476. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of Embryonic-Development of the Zebrafish. Dev Dynam 203, 253-310. Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., Yasui, W., Kikuchi, A., 2006. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer research 66, 10439- 10448. Lai, S.L., Chan, T.H., Lin, M.J., Huang, W.P., Lou, S.W., Lee, S.J., 2008. Diaphanousrelated formin 2 and profilin I are required for gastrulation cell movements. PloS one 3, e3439. Lim, S.T., Chen, X.L., Lim, Y., Hanson, D.A., Vo, T.T., Howerton, K., Larocque, N., Fisher, S.J., Schlaepfer, D.D., Ilic, D., 2008. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 29, 9-22. Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., Kikuchi, A., 2010. Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. The EMBO journal 29, 1192-1204. Matsumoto, S., Kikuchi, A., 2012. Regulation of focal adhesion dynamics by Wnt5a signaling. Methods Mol Biol 839, 215-227. Mitra, S.K., Hanson, D.A., Schlaepfer, D.D., 2005. Focal adhesion kinase: in command and control of cell motility. Nature reviews. Molecular cell biology 6, 56- 68. Mitra, S.K., Schlaepfer, D.D., 2006. Integrin-regulated FAK-Src signaling in normal and cancer cells. Current opinion in cell biology 18, 516-523. Moeller, M.L., Shi, Y., Reichardt, L.F., Ethell, I.M., 2006. EphB receptors regulate dendritic spine morphogenesis through the recruitment/phosphorylation of focal adhesion kinase and RhoA activation. The Journal of biological chemistry 281, 1587- 1598. Myers, J.P., Robles, E., Ducharme-Smith, A., Gomez, T.M., 2012. Focal adhesion kinase modulates Cdc42 activity downstream of positive and negative axon guidance cues. J Cell Sci 125, 2918-2929. Oteiza, P., Koppen, M., Krieg, M., Pulgar, E., Farias, C., Melo, C., Preibisch, S., Muller, D., Tada, M., Hartel, S., Heisenberg, C.P., Concha, M.L., 2010. Planar cell polarity signalling regulates cell adhesion properties in progenitors of the zebrafish laterality organ. Development 137, 3459-3468. Peng, X., Wu, X., Druso, J.E., Wei, H., Park, A.Y., Kraus, M.S., Alcaraz, A., Chen, J., Chien, S., Cerione, R.A., Guan, J.L., 2008. Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci U S A 105, 6638-6643. Petridou, N.I., Stylianou, P., Christodoulou, N., Rhoads, D., Guan, J.L., Skourides, P.A., 2012. Activation of endogenous FAK via expression of its amino terminal domain in Xenopus embryos. PloS one 7, e42577. Petridou, N.I., Stylianou, P., Skourides, P.A., 2013. A dominant-negative provides new insights into FAK regulation and function in early embryonic morphogenesis. Development 140, 4266-4276. Quach, N.L., Rando, T.A., 2006. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293, 38-52. Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, J.D., Joung, J.K., 2012. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30, 460-465. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R., 2003. Cell migration: integrating signals from front to back. Science 302, 1704-1709. Ridyard, M.S., Sanders, E.J., 2001. Inhibition of focal adhesion kinase expression correlates with changes in the cytoskeleton but not apoptosis in primary cultures of chick embryo cells. Cell Biol Int 25, 215-226. Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., Stainier, D.Y., 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233. Roszko, I., Sawada, A., Solnica-Krezel, L., 2009. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Seminars in cell & developmental biology 20, 986-997. Schaller, M.D., Borgman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B., Parsons, J.T., 1992. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89, 5192-5196. Schlaepfer, D.D., Mitra, S.K., 2004. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14, 92-101. Serrels, B., Serrels, A., Brunton, V.G., Holt, M., McLean, G.W., Gray, C.H., Jones, G.E., Frame, M.C., 2007. Focal adhesion kinase controls actin assembly via a FERMmediated interaction with the Arp2/3 complex. Nature cell biology 9, 1046-1056. Shen, T.L., Park, A.Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., Flavell, R.A., Gu, H., Guan, J.L., 2005. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol 169, 941-952. Shiokawa, S., Yoshimura, Y., Nagamatsu, S., Sawa, H., Hanashi, H., Sakai, K., Noguchi, K., Nakamura, Y., 1998. Functional role of focal adhesion kinase in the process of implantation. Mol Hum Reprod 4, 907-914. Skoglund, P., Keller, R., 2010. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan. Current opinion in cell biology 22, 589-596. Solnica-Krezel, L., 2005. Conserved patterns of cell movements during vertebrate gastrulation. Current biology : CB 15, R213-228. Solnica-Krezel, L., Cooper, M.S., 2002. Cellular and genetic mechanisms of convergence and extension. Results and problems in cell differentiation 40, 136-165. Solnica-Krezel, L., Driever, W., 1994. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120, 2443-2455. Spicer, O.S., Wong, T.T., Zmora, N., Zohar, Y., 2016. Targeted Mutagenesis of the Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on Reproductive Performance. PLoS One 11, e0158141. Stylianou, P., Skourides, P.A., 2009. Imaging morphogenesis, in Xenopus with Quantum Dot nanocrystals. Mechanisms of development 126, 828-841. Takeshita, A., Iwai, S., Morita, Y., Niki-Yonekawa, A., Hamada, M., Yura, Y., 2014. Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA. International journal of oncology 44, 59- 68. Talbot, J.C., Amacher, S.L., 2014. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 11, 583-585. Thisse, C., Thisse, B., Schilling, T.F., Postlethwait, J.H., 1993. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203-1215. Tsuda, S., Kitagawa, T., Takashima, S., Asakawa, S., Shimizu, N., Mitani, H., Shima, A., Tsutsumi, M., Hori, H., Naruse, K., Ishikawa, Y., Takeda, H., 2010. FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium. J Cell Sci 123, 484-496. Ulrich, F., Concha, M.L., Heid, P.J., Voss, E., Witzel, S., Roehl, H., Tada, M., Wilson, S.W., Adams, R.J., Soll, D.R., Heisenberg, C.P., 2003. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130, 5375-5384. Webb, D.J., Donais, K., Whitmore, L.A., Thomas, S.M., Turner, C.E., Parsons, J.T., Horwitz, A.F., 2004. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature cell biology 6, 154-161. Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M., Slusarski, D.C., 2003. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162, 889-898. Yang, J.T., Bader, B.L., Kreidberg, J.A., Ullman-Cullere, M., Trevithick, J.E., Hynes, R.O., 1999. Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215, 264-277. Yeh, C.M., Liu, Y.C., Chang, C.J., Lai, S.L., Hsiao, C.D., Lee, S.J., 2011. Ptenb mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish. PloS one 6, e18702. Yoshizuka, N., Chen, R.M., Xu, Z., Liao, R., Hong, L., Hu, W.Y., Yu, G., Han, J., Chen, L., Sun, P., 2012. A novel function of p38-regulated/activated kinase in endothelial cell migration and tumor angiogenesis. Mol Cell Biol 32, 606-618. Zhang, P., Bai, Y., Lu, L., Li, Y., Duan, C., 2016. An oxygen-insensitive Hif-3alpha isoform inhibits Wnt signaling by destabilizing the nuclear beta-catenin complex. Elife 5. Zhang, T., Yao, S., Wang, P., Yin, C., Xiao, C., Qian, M., Liu, D., Zheng, L., Meng, W., Zhu, H., Liu, J., Xu, H., Mo, X., 2011. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer. The Journal of biological chemistry 286, 9514-9525. Zhu, Y., Shen, T., Liu, J., Zheng, J., Zhang, Y., Xu, R., Sun, C., Du, J., Chen, Y., Gu, L., 2013. Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells. Cellular signalling 25, 1075-1085. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48792 | - |
dc.description.abstract | 黏著斑激酶(focal adhesion kinase,FAK)在許多重要的細胞生理過程上扮演著重要的角色,其中包括了胚胎發育及器官發育等過程。儘管我們已知FAK在胚胎發育過程中的重要性,然究竟FAK如何調控早期胚胎發育,又如何在此一時期與其他訊息分子溝通的研究還是很有限。在本論文中,藉由比較fak1a與1b與人類FAK的氨基酸序列, 我發現兩者有高度的相似性。利用mopholino oligonucleotides (MO)抑制蛋白質生成,我觀察到魚胚(morphants)的外包作用(epiboly), 胚體趨中與延展作用(convergent extension)以及下胚層(hypoblast)細胞的移動都受到明顯的影響。藉由細胞的移植實驗, 我發現fak1a所調控的細胞移動受外界環境所影響,肌凝蛋白(filamentous actin,F-actin)在細胞外包作用時所產生的環狀構造(actin ring)在fak1a缺乏的胚胎是不完整的,進而推測其可能為導致胚外包作用缺失的原因。我同時也利用了CRISPR/Cas9的基因修改技術製作出了fak1a的突變魚(mutant),但僅有少部分胚有腔腸化缺陷的表型。然而在mutants與mophants我發現相同的基因有上升之趨勢,此顯示相似的細胞傳導路徑受到了影響,更重要的是我發現Wnt5b可能位於fak1a的上游調控下游路徑以調節細胞移動的過程。藉由mRNA拯救的實驗我發現其下游因子是small GTPase,Rac1與CDC42。總結,我首次在斑馬魚胚腔腸化過程中發現了FAK與WNT5b共同藉由調控Rac1與CDC42影響了肌凝蛋白之動態平衡以控制細胞移動現象。 | zh_TW |
dc.description.abstract | Focal adhesion kinase is known to mediate multiple vital cellular processes and be involved in embryogenesis and organ development. Despite its necessity, how FAK regulates and integrates with other cellular signals during early embryogenesis still remains poorly understood. Here, I first demonstrated the high sequence similarity of zebrafish fak1a and fak1b to human FAK. Using antisense morpholino (MO), I observed that the loss of Fak1a impaired epiboly, convergence and extension and hypoblast cell migration in a non cell-autonomous manner. Furthermore, I showed clear disturbance of the filamentous actin (F-actin) linkage bundles between actin-ring and yolk syncytial nuclei that appeared to affect epiboly in fak1a morphants. Genetic deletion of fak1a using CRISPR/Cas9 mediated gene editing reveals minor gastrulation defects than that of morphants, but some genes were induced both in morphants and mutants. It suggests that similar molecular pathways were affected. More importantly, I found that overexpression of fak1a or wnt5b mRNA could cross rescue convergence defects induced by wnt5b or fak1a MO, respectively. Both Wnt5b and Fak1a appeared to mediate gastrulation via Rac1 and Cdc42, since both small GTPases could synergistically rescue wnt5b and fak1a morphant phenotypes. Taken together, I demonstrate for the first time the missing functional interaction between Wnt and FAK signaling to mediate gastrulation cell movements via precise regulation of Rac1 and Cdc42 activities and subsequent actin dynamics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:09:25Z (GMT). No. of bitstreams: 1 ntu-105-D99b41005-1.pdf: 4059343 bytes, checksum: c1783e38783a71039c79891ff36ff9ed (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 ................................................................................................................................... 4
ABSTRACT .................................................................................................................................. 5 Introduction .............................................................................................................................. 7 Materials and methods .......................................................................................................... 11 Zebrafish fak cloning and expression vector construction ...................................... 11 Immunofluorescence embryos staining .................................................................... 12 Cell transplantation ................................................................................................. 12 Immunoblotting ........................................................................................................ 13 Zebrafish maintenance and embryo culture ............................................................. 13 Microinjection .......................................................................................................... 14 Whole-mount in situ hybridization ........................................................................... 14 Rhodamine-phalloidin staining and confocal imaging analysis .............................. 15 Time-lapse DIC imaging and analysis ..................................................................... 15 Rac1 and Cdc42 activation assay ............................................................................ 16 Hae III mutagenesis assay and sequencing ............................................................. 17 Statistical analysis ................................................................................................... 18 Results ..................................................................................................................................... 18 Fak1a and Fak1b are maternally and ubiquitously expressed in zebrafish embryos .................................................................................................................................. 19 Loss Fak1a and Fak1b causes gastrulation defects ................................................ 19 Loss of Fak1a and Fak1b causes convergence and extension defect ...................... 21 Loss of Fak1a causes reduction of cortical actin fibers and uneven distribution of YSL nuclei ................................................................................................................ 22 Wnt5b act both upstream and parallel to Fak1a to regulate gastrulation .............. 26 CRISPR/Cas9 mediated fak1a deletion causes mild gastrulation defect ................. 28 Fak1a and Wnt5b cooperatively mediate gastrulation via modulating Rac1 and Cdc42 ....................................................................................................................... 32 Discussion ................................................................................................................................ 34 Tables ...................................................................................................................................... 39 Table 1. Quantification of convergence and extension defects caused by fak1a tMO and wnt5b tMO co-injection .................................................................................... 39 Table 2. Quantification of convergence and extension defects caused by wnt5b tMO with or without fak1a mRNA co-injection ...................................................... 40 Table 3. Quantification of convergence and extension defects caused by fak1a tMO with or without wnt5b mRNA co-injection .............................................................. 41 Table 4. Quantification of convergence and extension defects caused by fak1a tMO in wild type or fak1a mutant background ................................................................ 42 Table 5. Primers and MOs used in this study .......................................................... 43 Table 6. Guiding RNA in this study ........................................................................ 44 Table 7. Sequences of fak1a mutants ...................................................................... 45 References ............................................................................................................................... 46 Figures ..................................................................................................................................... 55 Figure 1. fak1a expression pattern in zebrafish .................................................. 55 Figure 2. fak1a tMO2 causes dose-dependent and specific inhibition on epiboly .................................................................................................................................. 56 Figure 3. Loss of fak1b causes dose-dependent and specific inhibition on epiboly ..................................................................................................................... 58 Figure 4. Loss of Fak1a perturbs the synchronized migration of enveloping and deep cell layers and F-actin network ............................................................ 60 Figure 5. Fak1a functions non cell-autonomously to regulate cell migration during gastrulation ................................................................................................ 62 Figure 6. Fak1a overexpression rescues defects in wnt5b mutants and morphants ............................................................................................................... 64 Figure 7. Knockdown of p53 could not rescued epiboly defect of wnt5b morphants ............................................................................................................... 65 Figure 8. Fak1a and wnt5b showed no synergistic effect during gastrulation . 66 Figure 9. Fak1a is down-regulated in wnt5b morphants ................................... 68 Figure 10. Fak1a and wnt5b reciprocally rescue convergence defect caused by antisense MO against each other .......................................................................... 69 Figure 11. Wnt5b partially rescued epiboly defect of fak1a morphants ........... 70 Figure 12. CRISPR/Cas9-mediated deletion of Fak1a resulted in minor defect in gastrulation......................................................................................................... 72 Figure 13. CRISPR/cas9 mediated fak1a ablation causes minor effect on gastrulation ............................................................................................................. 73 Figure 14. Fak1a deletion resulted in compensatory changes in fak1b and wnt5b ....................................................................................................................... 75 Figure 15. CRISPR/cas9 mediated fak1a interference causes gastrulation defect ....................................................................................................................... 76 Figure 16. CRISPR/cas9 mediated fak1b interference causes gastrulation defect in F0 embryos .............................................................................................. 77 Figure 17. Low concentration of Rac1 and Cdc42 mRNA rescues wnt5b and fak1a morphants during gastrulation .................................................................. 79 Figure 18. Rac1 and Cdc42 are downstream of wnt5b and fak1a during gastrulation in zebrafish embryos ........................................................................ 81 Appendix Figures .................................................................................................................... 82 | |
dc.language.iso | en | |
dc.title | Fak1a與Wnt5b經由Rac1與Cdc42聯合調控斑馬魚胚早期腔腸化時之細胞遷徙過程 | zh_TW |
dc.title | Focal adhesion kinase 1a and Wnt5b cooperatively mediate gastrulation cell movements via Rac1 and Cdc42 | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 沈湯龍,鍾邦柱,鄭邑荃,黃聲蘋 | |
dc.subject.keyword | FAK,Wnt5b,Rac1,Cdc42,胚體趨中與延展作用,外包現象,腔腸化,斑馬魚, | zh_TW |
dc.subject.keyword | FAK,Wnt5b,Rac1,Cdc42,convergent extension,epiboly,gastrulation,zebrafish, | en |
dc.relation.page | 92 | |
dc.identifier.doi | 10.6342/NTU201603706 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-10-25 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。