請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝 | |
| dc.contributor.author | In-Chi Young | en |
| dc.contributor.author | 楊穎奇 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:09:17Z | - |
| dc.date.available | 2017-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-11-02 | |
| dc.identifier.citation | 1. Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum. Dis Clin North Am 2013; 39:1-19
2. Woolf, AD., Pfleger, B., Burden of major musculoskeletal conditions. Bull World Health Organ 2010; 81: 646–656. 3. Nguyen, UDT., Zhang, Y., Zhu, Y., Niu, J., Zhang, B., Felson, DT., Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann Intern Med 2011; 155: 725–732. 4. Huang TL, Wu CC, Yue J, Sumi S, Yang KC. l-Lysine regulates tumor necrosis factor-alpha and matrix metalloproteinase-3 expression in human osteoarthritic chondrocytes. Process Biochem 2016;51: 904–11 5. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian J Intern Med 2011; 2:205-212. 6. Felson DT. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther 2009; 11:203. 7. Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 2011;25:815-823 8. Li Y, Xu L. Advances in understanding cartilage remodeling. F1000Res. 2015; 4(F1000 Faculty Rev):642. 9. Kim H, Kang D, Cho Y, Kim JH. Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. Mol Cells 2015; 38:677-684. 10. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011; 7:33-42. 11. Clouet J, Vinatier C, Merceron C, Pot-vaucel M, Maugars Y, Weiss P, et al.. From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today 2009; 14:913-925. 12. Calamia V, Mateos J, Fernández-Puente P, Lourido L, Rocha B, Fernández-Costa C, Montell E, Vergés J, Ruiz-Romero C, Blanco FJ. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Sci Rep 2014;4:5069 13. Chen WC, Wei YH, Huang JB, Chu IM, Yao CL. Biological effects of oligosaccharide chondroitin sulfate C on human articular chondrocytes. Biomed Eng Appl Basis Commun 2011;23:245-252 14. Natoli RM, Athanasiou KA. Traumatic loading of articular cartilage: Mechanical and biological responses and post-injury treatment. Biorheology 2009;46:451-85. 15. Sellam J, Berenbaum F. Osteoarthritis and obesity. Rev Prat 2012;62:621-624 16. Kurz B, Lemke A, Kehn M, Domm C, Patwari P, Frank EH, Grodzinsky AJ, Schünke M. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 2004;50:123-130 17. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 2016;1862:576-591 18. Li D, Xie G, Wang W. Reactive oxygen species: the 2-edged sword of osteoarthritis. Am J Med Sci 2012;344:486-490 19. Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C. Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. Arthritis Rheum 2003;48:3151-3158 20. Fang HW. Trends and challenges of cartilage tissue engineering. Biomed Eng Appl Basis Commun 2009;21:149-155 21. Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning 2014;7:1-17 22. Johnson CI, Argyle DJ, Clements DN. In vitro models for the study of osteoarthritis. Vet J 2016; 209:40-49. 23. Thysen S, Luyten FP, Lories RJ. Targets, models and challenges in osteoarthritis research. Dis Model Mech 2015;8:17-30 24. Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P. Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum 1997;40:1670-1679 25. van Buul GM, Siebelt M, Leijs MJ, Bos PK, Waarsing JH, Kops N, Weinans H, Verhaar JA, Bernsen MR, van Osch GJ. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res 2014;32:1167-1174 26. Patil D, Dhaneshwar S, Kadam P. Diacerein-thymol prodrug: in vivo release and pharmacological screening in experimental models of osteoarthritis in Wistar rats. Inflamm Allergy Drug Targets 2015;13:393-405. 27. Ma Z, Piao T, Wang Y, Liu J. Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. Int Immunopharmacol 2015;25:83-87 28. Xu J, Zhang C. In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation. In Vitro Cell Dev Biol Anim 2014;50:623-629 29. Gabay O, Hall DJ, Berenbaum F, Henrotin Y, Sanchez C. Osteoarthritis and obesity: experimental models. Joint Bone Spine 2008; 75: 675–679. 30. Yang F, Patterson RP. A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions. Ann Biomed Eng 2008;36:762-8 31. Nicodemus GD, Bryant SJ. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthritis Cartilage 2010;18:126-37 32. Blanco FJ, Guitian R, Vázquez-Martul E, de Toro FJ, Galdo F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 1998; 41:284-289. 33. Aigner T, Kim HA. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum 2002; 46:1986-1996. 34. Liu SC, Lee HP, Hung CY, Tsai CH, Li TM, Tang CH. Berberine attenuates CCN2-induced IL-1beta expression and prevents cartilage degradation in a rat model of osteoarthritis. Toxicol Appl Pharmacol 2015; 289:20-29. 35. Shen C, Cai GQ, Peng JP, Chen XD. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling. Osteoarthritis Cartilage 2015; 23:2279-2287 36. Courties A, Gualillo O, Berenbaum F, Sellam J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis Cartilage 2015; 23:1955-1965. 37. Häuselmann HJ, Stefanovic-Racic M, Michel BA, Evans CH. Differences in nitric oxide production by superficial and deep human articular chondrocytes: implications for proteoglycan turnover in inflammatory joint diseases. J Immunol 1998; 160:1444-1448. 38. Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 2000; 43:1560-1570. 39. Baker MS, Feigan J, Lowther DA. The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate dehydrogenase. J Rheumatol 1989; 16:7-14. 40. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5:897-907. 41. Vincent F, Brun H, Clain E, Ronot X, Adolphe M. Effects of oxygen-free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J Cell Physiol 1989; 141:262-266. 42. Farooq SM, Boppana NB, Devarajan AC, Sekaran SD, Shankar EM, Li C, et al. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 2014; 9:e93056. 43. Chang LM, Yun HS, Kim YS, Ahn JW. Aucubin: potential antidote for alpha-amanitin poisoning. J Toxicol Clin Toxicol 1984; 22:77-85. 44. Li Y, Sato T, Metori K, Koike K, Che QM, Takahashi S. The promoting effects of geniposidic acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis. Biol Pharm Bull 1998; 21:1306-1310. 45. Shirley KP, Windsor LJ, Eckert GJ, Gregory RL. In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida Albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity. J Prosthodont 2015 46. Chang IM, Ryu JC, Park YC, Yun HS, Yang KH. Protective activities of aucubin against carbon tetrachloride-induced liver damage in mice. Drug Chem Toxicol 1983; 6:443-453. 47. Chang IM. Liver-protective activities of aucubin derived from traditional oriental medicine. Res Commun Mol Pathol Pharmacol 1998; 102:189-204. 48. Jin L, Xue HY, Jin LJ, Li SY, Xu YP. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur J Pharmacol 2008; 582:162-167. 49. Park KS. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes. Cytokine 2013; 62:407-412. 50. Shim KM, Choi SH, Jeong MJ, Kang SS. Effects of aucubin on the healing of oral wounds. In Vivo 2007;21:1037-1042 51. Cheng YH, Yang SH, Liu CC, Gefen A, Lin FH. Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr Polym 2013; 92:1512-1519. 52. Xue HY, Gao GZ, Lin QY, Jin LJ, Xu YP. Protective effects of aucubin on H2O2-induced apoptosis in PC12 cells. Phytother Res 2012; 26:369-374. 53. Xue H, Jin L, Jin L, Zhang P, Li D, Xia Y, et al. Neuroprotection of aucubin in primary diabetic encephalopathy. Sci China C Life Sci 2008; 51:495-502. 54. Pleonsil P, Soogarun S, Suwanwong Y. Anti-oxidant activity of holo- and apo-c-phycocyanin and their protective effects on human erythrocytes. Int J Biol Macromol 2013; 60:393-398. 55. Kuddus M, Singh P, Thomas G, Al-Hazimi A. Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res Int 2013; 2013:742859. 56. Ma X, Liu L, Zhang R, Liu JD, Shen W, Effect of expression on the expression of iNOS in pancreatic tissues of rats with type 2 diabetes mellitus. Complement Med 2010; 16: 1–3. 57. Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical Application of Spirulina platensis Derived C-Phycocyanin. Evid Based Complement Alternat Med 2016; 2016:7803846. 58. Cian RE, López-Posadas R, Drago SR, de Medina FS, Martínez-Augustin O. Immunomodulatory properties of the protein fraction from Phorphyra columbina. J Agric Food Chem 2012; 60:8146-8154. 59. Gao Y, Liao G, Xiang C, Yang X, Cheng X, Ou Y. Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol 2016; 83:185-194. 60. Romay Ch, González R, Ledón N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 2003; 4:207-216. 61. Zhang K, Wang L, Han Q, Heng BC, Yang Z, Ge Z. Relationship between cell function and initial cell seeding density of primary porcine chondrocytes in vitro. Biomed Eng Appl Basis Commun 2013;25:1340001 62. Bader DL, Salter DM, Chowdhury TT. Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011;2011:979032 63. Juhász T, Matta C, Somogyi C, Katona É, Takács R, Soha RF, Szabó IA, Cserháti C, Sződy R, Karácsonyi Z, Bakó E, Gergely P, Zákány R. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 2014; 26:468-482 64. Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 2005;52:794-799 65. Li Y, Frank EH, Wang Y, Chubinskaya S, Huang HH, Grodzinsky AJ. Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates degradation above a strain threshold. Osteoarthritis Cartilage 2013;21:1933-1941 66. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004;50:3145-3152 67. Martin I, Jakob M, Schäfer D, Dick W, Spagnoli G, Heberer M. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 2001;9:112-118 68. Rufino AT, Ribeiro M, Sousa C, Judas F, Salgueiro L, Cavaleiro C, Mendes AF. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur J Pharmacol 2015;750:141-150 69. Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 2011; 32:6953-6961 70. Wang P, Guan PP, Guo C, Zhu F, Konstantopoulos K, Wang ZY. Fluid shear stress-induced osteoarthritis: roles of cyclooxygenase-2 and its metabolic products in inducing the expression of proinflammatory cytokines and matrix metalloproteinases. FASEB J 2013;27:4664-4677 71. Zanotti S, Canalis E. Interleukin 6 mediates selected effects of Notch in chondrocytes. Osteoarthritis Cartilage 2013;21:1766-1773 72. Ashraf S, Mapp PI, Burston J, Bennett AJ, Chapman V, Walsh DA. Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animal models of osteoarthritis. Ann Rheum Dis 2014;73:1710-1718 73. Enochson L, Stenberg J, Brittberg M, Lindahl A. GDF5 reduces MMP13 expression in human chondrocytes via DKK1 mediated canonical Wnt signaling inhibition. Osteoarthritis Cartilage 2014;22:566-577 74. Halbwirth F, Niculescu-Morzsa E, Zwickl H, Bauer C, Nehrer S. Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes. Knee Surg Sports Traumatol Arthrosc 2015; 23:104-111 75. Lee YJ, Lee EB, Kwon YE, Lee JJ, Cho WS, Kim HA, Song YW. Effect of estrogen on the expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 and tissue inhibitor of metalloproternase-1 in osteoarthritis chondrocytes. Rheumatol Int 2003; 23:282-288 76. Li TF, O'Keefe RJ, Chen D. TGF-beta signaling in chondrocytes. Front Biosci 2005;10:681-688 77. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005;26:7095-7103 78. Pujol JP, Chadjichristos C, Legendre F, Bauge C, Beauchef G, Andriamanalijaona R, Galera P, Boumediene K. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res 2008; 49:293-297 79. Li WQ, Qureshi HY, Liacini A, Dehnade F, Zafarullah M. Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med 2004;37:196-207 80. Sullivan DE, Ferris M, Pociask D, Brody AR. The latent form of TGFbeta(1) is induced by TNFalpha through an ERK specific pathway and is activated by asbestos-derived reactive oxygen species in vitro and in vivo. J Immunotoxicol 2008;5:145-149 81. Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y. Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem 2008;317:43-50 82. Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48:1-15 83. Chubinskaya S, Segalite D, Pikovsky D, Hakimiyan AA, Rueger DC. Effects induced by BMPS in cultures of human articular chondrocytes: comparative studies. Growth Factors 2008; 26:275-83 84. Nam J, Perera P, Rath B, Agarwal S. Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation. Tissue Eng Part A 2013; 19:783-792 85. Ahmad R, Sylvester J, Ahmad M, Zafarullah M. Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes. Arch Biochem Biophys 2011;507:350-355 86. Matkowski A, Jamiołkowska-Kozlowska W, Nawrot I. Chinese medicinal herbs as source of antioxidant compounds--where tradition meets the future. Curr Med Chem 2013; 20:984-1004. 87. Ho JN, Lee YH, Park JS, Jun WJ, Kim HK, Hong BS, et al. Protective effects of aucubin isolated from Eucommia ulmoides against UVB-induced oxidative stress in human skin fibroblasts. Biol Pharm Bull 2005; 28:1244-1248. 88. Izumi M, Ikeuchi M, Ji Q, Tani T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci 2012; 19:77. 89. Jeong HJ, Koo HN, Na HJ, Kim MS, Hong SH, Eom JW, et al. Inhibition of TNF-alpha and IL-6 production by Aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells. Cytokine 2002;18: 252-259 90. Wang SN, Xie GP, Qin CH, Chen YR, Zhang KR, Li X, et al. Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-κB signaling pathway in rat articular chondrocytes. Int Immunopharmacol 2015; 24:408-415. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48782 | - |
| dc.description.abstract | 由於軟骨是關節中負責承重的組織,其自我修復的作用緩慢。在長時間承受外力的作用下往往會對關節軟骨造成難以復原的傷害,進而造成退化關節炎(OA)的發生。外力會影響軟骨細胞對軟骨的代謝作用,並因而改變軟骨的組成。藉由調控軟骨細胞所承受的外力,將有可能找出誘發 OA 的外在條件。本研究藉由對豬軟骨細胞施加一系列不同強度的持續性或間歇性的壓縮力,並觀察軟骨細胞代謝作用的變化,藉此找出誘導豬軟骨細胞退化的外力條件,並建立類退化性關節炎的細胞模組,以作為後續OA 研究或藥物篩選的平台。
本研究結果顯示,軟骨細胞若持續 24 小時承受超過 40 psi 的持續性壓縮力,軟骨細胞外基質(ECM)會因硫酸化糖胺聚醣(sGAG)的合成減少而降解;分解性基因MMP-13的表現量會顯著增加,而為 ECM 主要成分的 aggrecan 與 type II collagen的基因表現也有顯著降低的現象。促炎性基因IL-6的表現量增加以及活性氧(ROS)增加的結果也透露出發炎反應及氧化壓力的徵兆。在另一方面,適度的間歇性壓縮力有助於ECM 成分基因的表現,且不會增加分解性或促發炎性基因的表現。30-60 psi的間歇性壓縮力也會促進合成性蛋白 BMP-7 的產生。結果顯示出豬軟骨細胞會依照外在所施加的持續性或間歇性壓縮力的強度而表現出特定的代謝反應。藉此結果,我們以持續性的壓縮力來製作類退化性關節炎軟骨細胞模組,並隨後應用於藥物篩選上。 在藥物篩選中,中草藥成分中具有抗氧化、抗發炎及抗細胞凋亡作用的珊瑚木苷和藻藍素被選用來進行測試。利用前述的類退化性關節炎細胞作為外力性細胞膜組,搭配過氧化氫誘導的氧化性細胞膜組,共同測試珊瑚木苷和藻藍素對豬軟骨細胞的保護效果。 研究結果顯示珊瑚木苷和藻藍素均具有抑制 ROS 生成、降低 caspase-3 的活性以及抑制軟骨細胞凋亡的功能。珊瑚木苷和藻藍素在經過壓縮力或過氧化氫刺激後的軟骨細胞中仍能維持其 aggrecan 和 type II collagen 的基因表現。此外珊瑚木苷還具有抑制 IL-6 和 MMP-13 基因表現和保護 sGAG 的效果。結果顯示出珊瑚木苷能夠保護軟骨細胞免於外力或氧化壓力所造成的傷害,能抑制OA 初期徵兆的發生。在初期OA 的治療上展現其作為新穎藥物的潛力。 | zh_TW |
| dc.description.abstract | During osteoarthritis (OA) progression, damage from mechanical stress with insufficient self-repair by joints can contribute to the disease. The effects of exerting stress on chondrocyte metabolism can regulate cartilage homeostasis. The specific stress-response condition is therefore a key for OA induction. This study was aimed to produce a cell-based OA system as a disease model by evaluating the metabolic response of porcine chondrocyte with a series of mechanical stimulation via static or cyclic compression.
With static loading over 40 psi, extracellular matrix (ECM) degradation was initiated by a decrease in sulfated-glycosaminoglycans (sGAG) content, up-regulation of catabolic MMP-13 gene, and down-regulation of ECM related aggrecan and type II collagen genes within 24 h. Signs of pro-inflammatory events and oxidative stress were observed with respect to elevated IL-6 expression and reactive oxygen species (ROS) production, respectively. On the other hand, moderate cyclic loading (30-40 psi)-stimulated chondrocytes showed an up-regulation of ECM related genes without significant changes of catabolic and pro-inflammatory genes. BMP-7 concentration is increased after 30 to 60 psi of cyclic loading. These results showed that chondrocytes exhibited specific magnitude-dependent metabolic response to static or cyclic loading. The OA-like chondrocytes was generated accordingly with static loading and was adopted as a disease model for the following compound screening. In the screening process, herbal compounds aucubin and c-phycocyanin (C-PC) that have been shown to protect cellular components against oxidative stress, along with their anti-inflammation and anti-apoptosis effects, were verified using compression-generated OA-like chondrocyte model. The protective effects of compounds were also tested in oxidative stress-stimulated chondrocytes through H2O2 stimulation. The results showed that both aucubin and C-PC had the ability to inhibit ROS production, reduce caspase-3 activity, and decrease apoptosis cell population. Both compounds can also reverse aggrecan and type II collagen gene expressions after H2O2 or compression stimulation. Besides, aucubin showed a prominent inhibition effect on IL-6 and MMP-13 genes and protection of sGAG after compression and H2O2 stimulation. The results demonstrated that aucubin could prevent early signs of OA caused by compressive and oxidative stresses. Therefore, we suggest that aucubin can be used as a potential drug candidate for early OA treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:09:17Z (GMT). No. of bitstreams: 1 ntu-105-D99548017-1.pdf: 7219981 bytes, checksum: bb015a9defdf76db4107e0608ddf26d0 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Table of Contents
口試委員審定書……………………………………………………………i 誌謝………………………………………………………………………...ii Abstract (Chinese) ………..…...…………………………………...……...iii Abstract (English) ……...……………………….……………………….....v Chapter 1 Introduction …………………………….……………………… 1 1-1 Osteoarthritis …………………………………………….…………… 1 1-2 Mechanical stress in OA ……………………….…...…....…...……… 3 1-3 Oxidative stress in OA ………………………....…………………….. 4 1-4 Aucubin…………………………………...……………………………6 1-5 C-phycocyanin (C-PC).………………………….……………...…….. 7 1-6 Purpose of study………………………………………………………..8 Chapter 2 Materials and Methods ………………..…..…………………. 10 2-1 Isolation of chondrocytes ……………………...….………………… 10 2-2 Preparation of thermosensitive chitosan/gelatin/ β-GP (C/G/GP) hydrogel as cell carrier…………………..………….………...………10 2-3 Preparation of the polydimethylsiloxane (PDMS) membrane …………….……….……………...…….……………….. 11 2-4 Compression device description………………………………...…....11 2-5 Induction of compressive stress…………………….…………….…. 13 2-6 RNA extraction and gene expression of chondrocytes.……..…….… 13 2-7 Analysis of BMP-7 protein concentration ………………….….……. 14 2-8 Total DNA quantification………..……………………………....…... 14 2-9 Analysis of sulfated-glycosaminoglycans (sGAG) content..….….…. 15 2-10 Alcian blue staining………………………………………………… 16 2-11 Analysis of ROS production and scavenge effect……………..…… 16 2-12 Cell proliferation and cytotoxicity of aucubin/C-PC on chondrocytes…………………………………………………….…...17 2-13 Aucubin/C-PC pretreatment and induction of oxidative stress….…..18 2-14 Analysis of caspase-3 activity……………………………………….19 2-15 Analysis of chondrocytes apoptosis…………………………………19 2-16 Statistical analysis…………………………………………………...20 Chapter 3 A novel cell-based system of osteoarthritis-like chondrocyte using compressive stress…………………………….…………23 3-1 ECM related genes were downregulated with static loading but upregulated with moderate cyclic loading…………………………... 23 3-2 Expressions of MMP-13 and TIMP-1 were upregulated with static loading but not with cyclic loading……………………………..…… 24 3-3 Expressions of IL-6 were upregulated with static loading but not with cyclic loading ……………………………………………………...... 25 3-4 Expressions of TGF-β1 were upregulated with static loading; protein concentration of BMP-7 were increased with cyclic loading……..… 25 3-5 Cyclic loading but not static loading increased sulfated-GAGs production. …………………………………………………………... 26 3-6 Higher ROS production was shown with higher magnitude of loadings …………………………………..…………………………. 27 Discussion ………………………………………………………………..27 Chapter 4 Aucubin and c-phycocyanin alleviate osteoarthritic injury in chondrocytes stimulated with H2O2 and compressive stress …38 4-1 Aucubin/C-PC show no effects on chondrocytes proliferation or cytotoxicity……................................................................................... 38 4-2 Aucubin/C-PC reduce H2O2-induced ROS production in chondrocytes …………………………………….…………………... 38 4-3 Aucubin/C-PC inhibit H2O2-induced caspase-3 activity on chondrocytes…………………………………………………………..39 4-4 Aucubin/C-PC inhibit H2O2-induced apoptosis in chondrocytes….… 39 4-5 Aucubin/C-PC reverses H2O2/compression-mediated gene expression of aggrecan and type II collagen in chondrocytes ………………...….40 4-6 Aucubin but not C-PC could reduce both H2O2/compression-mediated MMP-13 and IL-6 gene expressions …………………………...…… 40 4-7 Aucubin/C-PC maintain sGAG content………………………………41 Discussion ………………………………………………………………. 42 Chapter 5 Conclusions and Perspectives………………………………… 55 References ………………………………………………………………. 57 Publication lists …………………………………………………………. 71 Index of Figures Figure 1-1. The chemical structure of Aucubin……...……………………. 9 Figure 1-2. The chemical structure of C-phycocyanin ………………….... 9 Figure 2-1. Compression device …………………...……………………. 21 Figure 3-1. ECM-related genes expressions of chondrocytes. ……...…... 32 Figure 3-2. Catabolic gene and anti-catabolic gene expressions of chondrocytes.……………………...………………………… 33 Figure 3-3. Proinflammatory gene expression of chondrocytes.………… 34 Figure 3-4. Anabolic gene and protein expression of chondrocytes…….. 35 Figure 3-5. Sulfated-GAGs production after compression.…………...… 36 Figure 3-6. ROS production after compression. …….….………………. 37 Figure. 4-1. WST-1 and LDH test of aucubin and C-PC ………..……… 46 Figure 4-2. ROS scavenging analysis of aucubin and C-PC……………. 47 Figure 4-3. Effect of aucubin and C-PC on ROS production through fluorescence imaging.………………………………...…….. 48 Figure 4-4. Effects of aucubin and C-PC on H2O2-induced caspase-3 activation…………………...……………………………….. 49 Figure 4-5. Effects of aucubin and C-PC on ECM component gene expression……………………………..……….…………….51 Figure 4-6. Effects of aucubin and C-PC on catabolic and proinflammatory gene expression. ……………………………………………. 52 Figure 4-7. Effects of aucubin on sGAG production and GAG contents after H2O2 and compression stimulation.…………………… 53 Figure 4-8. Effects of C-PC on sGAG production and GAG contents after H2O2 and compression stimulation…………………………. 54 Index of Tables Table 2-1. Primers of RT-qPCR…………………………………………...22 Table 4-1. Quantitative results of Annexin V test of aucubin and C-PC….50 | |
| dc.language.iso | en | |
| dc.subject | 藻藍素 | zh_TW |
| dc.subject | 退化性關節炎 | zh_TW |
| dc.subject | 外力 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 疾病模組 | zh_TW |
| dc.subject | 珊瑚木? | zh_TW |
| dc.subject | osteoarthritis | en |
| dc.subject | c-phycocyanin | en |
| dc.subject | aucubin | en |
| dc.subject | disease model | en |
| dc.subject | oxidative stress | en |
| dc.subject | mechanical stress | en |
| dc.title | 珊瑚木苷和藻藍素於壓力誘導之類退化性關節炎軟骨細胞模組之作用探討 | zh_TW |
| dc.title | A Compression-induced OA-like Chondrocyte Model for Aucubin and C-phycocyanin Evaluation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉華昌,吳信志,張至宏,許佳賢 | |
| dc.subject.keyword | 退化性關節炎,外力,氧化壓力,疾病模組,珊瑚木?,藻藍素, | zh_TW |
| dc.subject.keyword | osteoarthritis,mechanical stress,oxidative stress,disease model,aucubin,c-phycocyanin, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201603718 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-11-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
