Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞 (Hsiao-Chun Huang)
dc.contributor.authorYue-Qi Leeen
dc.contributor.author李悅綺zh_TW
dc.date.accessioned2021-06-15T11:09:13Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation[1] A. N. Brooks, S. Turkarslan, K. D. Beer, F. Yin Lo, and N. S. Baliga, 'Adaptation of cells to new environments,' Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 3, no. 5, pp. 544-561, 2011.
[2] Y. Tu and W.-J. Rappel, 'Adaptation in living systems,' Annual review of condensed matter physics, vol. 9, pp. 183-205, 2018.
[3] H. R. Horvitz and I. Herskowitz, 'Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question,' Cell, vol. 68, no. 2, pp. 237-255, 1992.
[4] M. Inaba and Y. M. Yamashita, 'Asymmetric stem cell division: precision for robustness,' Cell stem cell, vol. 11, no. 4, pp. 461-469, 2012.
[5] S. Partridge and J. Errington, 'The importance of morphological events and intercellular interactions in the regulation of prespore‐specific gene expression during sporulation in Bacillus subtilis,' Molecular microbiology, vol. 8, no. 5, pp. 945-955, 1993.
[6] J. Errington, 'Regulation of endospore formation in Bacillus subtilis,' Nature Reviews Microbiology, vol. 1, no. 2, pp. 117-126, 2003.
[7] I. S. Tan and K. S. Ramamurthi, 'Spore formation in B acillus subtilis,' Environmental microbiology reports, vol. 6, no. 3, pp. 212-225, 2014.
[8] J. Stove and R. Stanier, 'Cellular differentiation in stalked bacteria,' Nature, vol. 196, no. 4860, pp. 1189-1192, 1962.
[9] J. A. Lesley and L. Shapiro, 'SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus,' Journal of bacteriology, vol. 190, no. 20, pp. 6867-6880, 2008.
[10] J. C. England, B. S. Perchuk, M. T. Laub, and J. W. Gober, 'Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability,' Journal of bacteriology, vol. 192, no. 3, pp. 819-833, 2010.
[11] L. Britos, E. Abeliuk, T. Taverner, M. Lipton, H. McAdams, and L. Shapiro, 'Regulatory response to carbon starvation in Caulobacter crescentus,' PloS one, vol. 6, no. 4, p. e18179, 2011.
[12] M. Roberts, R. Cranenburgh, M. Stevens, and P. Oyston, 'Synthetic biology: biology by design,' Microbiology, vol. 159, no. Pt 7, p. 1219, 2013.
[13] D. T. Verhamme, J. C. Arents, P. W. Postma, W. Crielaard, and K. J. Hellingwerf, 'Investigation of in vivo cross-talk between key two-component systems of Escherichia coli,' Microbiology, vol. 148, no. 1, pp. 69-78, 2002.
[14] J. A. Arpino et al., 'Tuning the dials of synthetic biology,' Microbiology, vol. 159, no. Pt 7, p. 1236, 2013.
[15] C. J. Bashor and J. J. Collins, 'Understanding biological regulation through synthetic biology,' Annual review of biophysics, vol. 47, pp. 399-423, 2018.
[16] G. R. Bowman et al., 'Oligomerization and higher‐order assembly contribute to sub‐cellular localization of a bacterial scaffold,' Molecular microbiology, vol. 90, no. 4, pp. 776-795, 2013.
[17] G. R. Bowman et al., 'A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole,' Cell, vol. 134, no. 6, pp. 945-955, 2008.
[18] G. Ebersbach, A. Briegel, G. J. Jensen, and C. Jacobs-Wagner, 'A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter,' Cell, vol. 134, no. 6, pp. 956-968, 2008.
[19] S. K. Radhakrishnan, M. Thanbichler, and P. H. Viollier, 'The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus,' Genes development, vol. 22, no. 2, pp. 212-225, 2008.
[20] A. M. Perez, T. H. Mann, K. Lasker, D. G. Ahrens, M. R. Eckart, and L. Shapiro, 'A localized complex of two protein oligomers controls the orientation of cell polarity,' MBio, vol. 8, no. 1, 2017.
[21] J. Pu, J. Zinkus-Boltz, and B. C. Dickinson, 'Evolution of a split RNA polymerase as a versatile biosensor platform,' Nature chemical biology, vol. 13, no. 4, pp. 432-438, 2017.
[22] J. Quan and J. Tian, 'Circular polymerase extension cloning of complex gene libraries and pathways,' PloS one, vol. 4, no. 7, p. e6441, 2009.
[23] A. Paintdakhi et al., 'Oufti: an integrated software package for high‐accuracy, high‐throughput quantitative microscopy analysis,' Molecular microbiology, vol. 99, no. 4, pp. 767-777, 2016.
[24] A. H. Chau, J. M. Walter, J. Gerardin, C. Tang, and W. A. Lim, 'Designing synthetic regulatory networks capable of self-organizing cell polarization,' Cell, vol. 151, no. 2, pp. 320-332, 2012.
[25] 廖得健, '在大腸桿菌細胞中構建功能不對稱性細胞分裂,' 碩士, 分子與細胞生物學研究所, 國立臺灣大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/c9jnz4
[26] 劉陽, '在大腸桿菌中構建基於細胞極性蛋白質支架的合成生物學平臺,' 分子與細胞生物學研究所, 國立臺灣大學, 2015年, 2015.
[27] K. Scheu, R. Gill, S. Saberi, P. Meyer, and E. Emberly, 'Localization of aggregating proteins in bacteria depends on the rate of addition,' Frontiers in microbiology, vol. 5, p. 418, 2014.
[28] R. Lenarcic et al., 'Localisation of DivIVA by targeting to negatively curved membranes,' The EMBO journal, vol. 28, no. 15, pp. 2272-2282, 2009.
[29] 何佳澤, '在大腸桿菌平台中實現功能分化,' 碩士, 分子與細胞生物學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/f75h9c
[30] D. H. Edwards and J. Errington, 'The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division,' Molecular microbiology, vol. 24, no. 5, pp. 905-915, 1997.
[31] S. Oesterle, D. Gerngross, S. Schmitt, T. M. Roberts, and S. Panke, 'Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli,' Scientific reports, vol. 7, no. 1, pp. 1-10, 2017.
[32] T. A. Baker and R. T. Sauer, 'ClpXP, an ATP-powered unfolding and protein-degradation machine,' Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1823, no. 1, pp. 15-28, 2012.
[33] K. E. McGinness, T. A. Baker, and R. T. Sauer, 'Engineering controllable protein degradation,' Molecular cell, vol. 22, no. 5, pp. 701-707, 2006.
[34] J. B. Andersen, C. Sternberg, L. K. Poulsen, S. P. Bjørn, M. Givskov, and S. Molin, 'New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria,' Applied and environmental microbiology, vol. 64, no. 6, pp. 2240-2246, 1998.
[35] D. E. Cameron and J. J. Collins, 'Tunable protein degradation in bacteria,' Nature Biotechnology, vol. 32, no. 12, pp. 1276-1281, 2014, doi: 10.1038/nbt.3053.
[36] O. Borkowski, F. Ceroni, G.-B. Stan, and T. Ellis, 'Overloaded and stressed: whole-cell considerations for bacterial synthetic biology,' Current opinion in microbiology, vol. 33, pp. 123-130, 2016.
[37] I. Shachrai, A. Zaslaver, U. Alon, and E. Dekel, 'Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth,' Molecular cell, vol. 38, no. 5, pp. 758-767, 2010.
[38] G. R. Bowman et al., 'Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function,' Molecular microbiology, vol. 76, no. 1, pp. 173-189, 2010.
[39] A. A. Iniesta and L. Shapiro, 'A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade,' Proceedings of the National Academy of Sciences, vol. 105, no. 43, pp. 16602-16607, 2008.
[40] R. H. Vass, J. Nascembeni, and P. Chien, 'The Essential Role of ClpXP in Caulobacter crescentus Requires Species Constrained Substrate Specificity,' Front Mol Biosci, vol. 4, p. 28, 2017, doi: 10.3389/fmolb.2017.00028.
[41] G. J. Kim, G. Kumano, and H. Nishida, 'Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors,' Development, vol. 134, no. 8, pp. 1509-1518, 2007.
[42] E. Gur and R. T. Sauer, 'Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease,' Proceedings of the National Academy of Sciences, vol. 105, no. 42, pp. 16113-16118, 2008.
[43] C. A. Hale and P. A. de Boer, 'Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli,' Cell, vol. 88, no. 2, pp. 175-185, 1997.
[44] M. Pazos, P. Natale, and M. Vicente, 'A specific role for the ZipA protein in cell division stabilization of the FtsZ protein,' Journal of Biological Chemistry, vol. 288, no. 5, pp. 3219-3226, 2013.
[45] K. Kono et al., 'Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization,' Elife, vol. 8, p. e45559, 2019.
[46] N. V. Mushnikov, A. Fomicheva, M. Gomelsky, and G. R. Bowman, 'Inducible asymmetric cell division and cell differentiation in a bacterium,' Nature chemical biology, vol. 15, no. 9, pp. 925-931, 2019.
[47] S. Molinari, D. L. Shis, S. P. Bhakta, J. Chappell, O. A. Igoshin, and M. R. Bennett, 'A synthetic system for asymmetric cell division in Escherichia coli,' Nature chemical biology, vol. 15, no. 9, pp. 917-924, 2019.
[48] S. J. Doong, A. Gupta, and K. L. Prather, 'Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli,' Proceedings of the National Academy of Sciences, vol. 115, no. 12, pp. 2964-2969, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48777-
dc.description.abstract不對稱的分裂使細胞得以產生不同功能的子細胞,並以此因應環境的變化,來維持自身的生存以及發育。也因此,不對稱性分裂廣泛存在於各式各樣的生命系統當中,幾乎已經是真核生物的基本特性。不管是在單細胞或是多細胞中,大多數的生物都具有此驚人的特性,將物質在空間上不對稱地分佈並進一步進行不對稱分裂;為了更好地了解這樣的系統,我們選擇了本來就不具有不對稱性分裂的大腸桿菌作為本篇研究的模式生物,利用合成生物學的概念,將不對稱性分裂系統建立在其體內作為平台以進行研究。平台之中包含了來自新月柄桿菌的極區組織蛋白PopZ以及附著端溶菌酶SpmX蛋白,利用PopZ自我聚集在細胞端點的特性作為細胞不對稱性的基礎,配合SpmX的N端(SpmX△C)與PopZ的結合,並進一步將SpmX△C與T7核糖核酸酶融合作為轉接媒介,最後轉錄出下游訊號細胞分裂蛋白DivIVA,而DivIVA也隨即在PopZ端被轉譯成蛋白質,因此當細胞分裂時,兩個子細胞擁有不同的蛋白組合,進而成功實現此平台。而為了優化這個平台,我們也採取了多種方式,諸如調整核糖體結合位點、在蛋白質上接上降解標籤、更換轉接媒介;甚至透過ZipAC將黴漿菌Lon蛋白酶(mfLon protease)建立在細胞中點,以作為下游的拮抗訊號。統合以上所述,此篇研究展示了在大腸桿菌上建立合成性的不對稱分裂平台。zh_TW
dc.description.abstractAsymmetric cell division gives rise to two daughter cells with distinct cell fates in response to their environment in order to maintain certain key functions critical for their survival and development. Asymmetric cell division is ubiquitous and arguably one of the most fundamental properties of living systems. From unicellular to multicellular organisms, most organisms have the astonishing capability to prompt the spatial asymmetry of molecules and then implement asymmetric cell division. To better understand this system, we chose a model organism lacking asymmetric division per se, which is the E. coli from prokaryotes, then took a synthetic approach to engineer the asymmetric division platform into E. coli. In this synthetic system, we first utilized PopZ from Caulobacter crescentus as fate-determinant in E. coli, where PopZ self-assembled into a macromolecule to localize at one pole. We then took SpmX from C. crescentus as an adaptor, which the N-terminus (SpmX△C) was capable to be recruited by PopZ. Hereafter, SpmX△C fused with Split T7 RNAPs reconstituted into a functional enzyme, which transcribed downstream gene of interest (reporter) divIVA. DivIVA mRNAs were immediately translated to functional proteins that were retained at the PopZ pole via its negative curvature membrane targeting capacity. Next, we applied multiple strategies to refine our synthetic asymmetric platform, such as tuning ribosome binding site, adding degradation tag and replacing the adaptor. Furthermore, we added mf-Lon protease as antagonizing signal of downstream signal localized at mid-cell via ZipAC’. In sum, we showcased the building of synthetic biological asymmetry from scratch.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:13Z (GMT). No. of bitstreams: 1
U0001-1308202012184500.pdf: 11748865 bytes, checksum: ea728187edbc208eb1539ea3779d95ab (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
FIGURE LIST vii
TABLE LIST viii
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 4
2.1 Bacterial Strains and Growth Conditions 5
2.1.1 Strain 5
2.1.2 Growth media and conditions 5
2.1.3 Bacterial stock 6
2.2 DNA Cloning Methods 6
2.2.1 Plasmids 6
2.2.2 Primer design 11
2.2.3 Polymerase chain reaction (PCR) 12
2.2.4 DNA clean up 13
2.2.5 DNA digestion 13
2.2.6 DNA end modification 13
2.2.7 Agarose gel electrophoresis 13
2.2.8 DNA Gel extraction 14
2.2.9 DNA ligation 14
2.2.10 DNA assembly 14
2.2.11 Plasmid DNA transformation 14
2.2.12 Colony screening 15
2.2.13 Plasmid DNA extraction 15
2.2.14 Verifying the insert DNA sequence 15
2.3 Live-cell preparation 15
2.4 Fluorescence Microscopy 16
2.5 Quantification of fluorescent images 16
2.6 Determination of PopZ unipolar cell 16
2.7 Quantification of degree of asymmetry 17
2.8 Fluorescence In Situ Hybridilation (FISH) 17
2.8.1 Probe generation 17
2.8.2 Sample fixation and permeabilization 18
2.9 Measuring of the growth rate of E. coli 19
Chapter 3 Result and Conclusion 20
3.1 Construction of the asymmetric platform using bottom-up synthetic biology system in E. coli 20
3.1.1 Expression of PopZ from C. crescentus serve as a unipolar module in E. coli 20
3.1.2 Utilization of SpmX△C act as an adaptor onto the PopZ foci 22
3.1.3 Assemble split T7 RNAPs into PopZ/SpmX△C system 23
3.1.4 Substitution of downstream reporter protein 24
3.1.5 Detection of T7 RNAP transcription at the PopZ pole 25
3.1.6 Implementation of the asymmetric platform in E. coli 25
3.2 Refinement of the asymmetric platform through various strategies in E. coli 26
3.2.1 Utilization of lower protein production approach 26
3.2.2 Utilization of higher protein degragdation approach 27
3.2.3 Replacing one of SpmX△C adaptors with CpdR 28
3.3 Set up a mid-cell antagonizing signal module to reinforce the asymmetric platform. 30
3.3.1 Location of mf-Lon protease on the septal-ring in E. coli 30
3.3.2 Prospect of a septal antagonizing signal 31
3.4 Conclusion 32
Chapter 4 Discussion and Future work 34
FIGURES 35
REFERENCE 69
dc.language.isoen
dc.subject不對稱細胞分裂zh_TW
dc.subject黴漿菌Lon蛋白酶zh_TW
dc.subject細胞分裂蛋白DivIVAzh_TW
dc.subjectT7核糖核酸聚合酶zh_TW
dc.subject附著端溶菌酶同原蛋白zh_TW
dc.subject極區組織蛋白zh_TW
dc.subject合成生物學zh_TW
dc.subjectSynthetic biologyen
dc.subjectmfLonen
dc.subjectDivIVAen
dc.subjectSpmXen
dc.subjectPopZen
dc.subjectAsymmetric cell divisionen
dc.subjectT7 RNA polymeraseen
dc.title利用合成系統在大腸桿菌中實現和優化空間的不對稱性zh_TW
dc.titleImplementation and Refinement of Spatial Asymmetry with a Synthetic System in Escherichia colien
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee涂熊林(Hsiung-Lin Tu),吳亘承(HSUAN-CHEN WU)
dc.subject.keyword不對稱細胞分裂,合成生物學,極區組織蛋白,附著端溶菌酶同原蛋白,T7核糖核酸聚合酶,細胞分裂蛋白DivIVA,黴漿菌Lon蛋白酶,zh_TW
dc.subject.keywordAsymmetric cell division,Synthetic biology,PopZ,SpmX,T7 RNA polymerase,DivIVA,mfLon,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202003219
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202012184500.pdf
  未授權公開取用
11.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved