Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48766
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方俊民
dc.contributor.authorYing-Chu Chenen
dc.contributor.author陳映竹zh_TW
dc.date.accessioned2021-06-15T07:12:52Z-
dc.date.available2012-09-21
dc.date.copyright2010-09-21
dc.date.issued2010
dc.date.submitted2010-09-13
dc.identifier.citation1. Prescher, J. A.; Bertozzi, C. R. Cell 2006, 126, 851–854. Chemical technologies for
probing glycans.
2. Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855–867. Glycosylation in cellular
mechanisms of health and disease.
3. Feizi, T.; Childs, R. A. Biochem. J. 1987, 245, 1–11. Carbohydrates as antigenic
determinants of glycoproteins.
4. Karpas, A.; Fleet, G. W.; Dwek, R. A.; Petursson, S.; Namgoong, S. K.; Ramsden,
N. G.; Jacob, G. S.; Rademacher, T. W. Proc.Natl. Acad. Sci. USA 1988, 85,
9229–9233. Aminosugar derivatives as potential anti-human immunodeficiency
virus agents.
5. Ezekowitz, R. A. B.; Williams, D. J.; Koziel, H.; Armstrong, M. Y. K.; Warner, A.;
Richards, F. F.; Rose, R. M. Nature 1991, 351, 155–158. Uptake of
pneumocystis-carinii mediated by the macrophage mannose receptor.
6. Mechref, Y.; Novotny, M. V. Chem. Rev. 2002, 102, 321-370. Structural
investigations of glycoconjugates at high sensitivity.
7. Pabst, M.; Kolarich, D.; Pöltl, G.; Dalik, T.; Lubec, G.; Hofinger, A.; Altmann, F.
Anal. Biochem. 2009, 384, 263–273. Comparison of fluorescent labels foroligosaccharides and introduction of a new postlabeling purification method.
8. Lamari, F. N.; Kuhn, R.; Karamanos, N. K. J. Chromatogr. B 2003, 793, 15–36.
Derivatization of carbohydrates for chromatographic, electrophoretic and mass
spectrometric structure analysis.
9. Morelle, W.; Lemoine, J.; Strecker, G. Anal. Biochem. 1998, 259, 16–27. Structural
analysis of O-linked oligosaccharide-alditols by electrospray-tandem mass
spectrometry after mild periodate oxidation and derivatization with
2-aminopyridine.
10. Charlwood, J.; Birrell, H.; Tolson, D.; Camilleri, P. Anal. Chem. 1998, 70,
2530–2535. Two-dimensional chromatography in the analysis of complex glycans
from transferrin.
11. Okafo, G.; Burrow, L.; Carr, S. A.; Roberts, G. D.; Johnson, W.; Camilleri, P. Anal.
Chem. 1996, 68, 4424–4430. A coordinated high-performance liquid
chromatographic, capillary electrophoretic, and mass spectrometric approach for
the analysis of oligosaccharide mixtures derivatized with 2-aminoacridone.
12. Rothenberg, B. E.; Hayes, B. K.; Toomre, D.; Manzi, A. E.; Varki, A. Proc. Natl.
Acad. Sci. USA 1993, 90, 11939–11943. Biotinylated diaminopyridine: an approach
to tagging oligosaccharides and exploring their biology.
13. Hirokazu, Y.; Koichi, K. Trends Glycosci. and Glycotechnol. 2009, 21, 95–104.
Multidimensional HPLC mapping method for the structural analysis of anionic
N-glycans.
14. Guttman, A.; Pritchett, T. Electrophoresis 1995, 16, 1906–1911. Capillary gel
electrophoresis separation of high-mannose type oligosaccharides derivatized by
1-aminopyrene-3,6,8-trisulfonic acid.
15. Zaia, J. Mass Spectrom. Rev. 2004, 23, 161–227. Mass spectrometry of
oligosaccharides.
16. Ernst, P. D. B.; Hart, P. D. G. W.; Sinaý, P. D. P.; Dell, A.; Morris, H. R.; Easton, R.;
Haslam, S.; Panico, M.; Sutton-Smith, M.; Reason, A. J.; Khoo, K.-H., Structural
analysis of oligosaccharides: FAB-MS, ES-MS and MALDI-MS. In Carbohydrates
in chemistry and biology, 2008; pp 915–945.
17. Harvey, D. J. J. Am. Soc. Mass Spectrom. 2000, 11, 900–915. Electrospray mass
spectrometry and fragmentation of N-linked carbohydrates derivatized at the
reducing terminus.
18. Harvey, D. J. Int. J. Mass Spectrom. 2003, 226, 1–35. Matrix-assisted laser
desorption/ionization mass spectrometry of carbohydrates and glycoconjugates.
19. Harvey, D. J. Mass Spectrom. Rev. 1999, 18, 349–450. Matrix-assisted laser
desorption/ionization mass spectrometry of carbohydrates.
20. Hillenkamp, F.; Jasna, P.-K., Eds., MALDI MS. 1st ed.; Wiley-VCH: Weinheim,2007.
21. Ciucanu, I.; Kerek, F. Carbohydrate Res. 1984, 131, 209–217. A simple and rapid
method for the permethylation of carbohydrates.
22. Dell, A. Methods Enzymol. 1990, 193, 647–660. Preparation and desorption mass
spectrometry of permethyl and peracetyl derivatives of oligosaccharides.
23. Hase, S. J. Chromatogr. A 1996, 720, 173–182. Precolumn derivatization for
chromatographic and electrophoretic analyses of carbohydrates.
24. Yoshino, K.-i.; Takao, T.; Murata, H.; Shimonishi, Y. Anal. Chem. 1995, 67,
4028–4031. Use of the derivatizing agent, 4-aminobenzoic acid
2-(diethylamino)ethyl ester, for high-sensitivity detection of oligosaccharides by
electrospray ionization mass spectrometry.
25. Mo, W.; Takao, T.; Sakamoto, H.; Shimonishi, Y. Anal. Chem. 1998, 70, 4520–4526.
Structural analysis of oligosaccharides derivatized with 4-aminobenzoic acid
2-(diethylamino)ethyl ester by matrix-assisted laser desorption/ionization mass
spectrometry.
26. Broberg, S.; Broberg, A.; Duus, J. Ø. Rapid Commun. Mass Spectrom. 2000, 14,
1801–1805. Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry of oligosaccharides derivatized by reductive amination and
N,N-dimethylation.
27. Miura, Y.; Hato, M.; Shinohara, Y.; Kuramoto, H.; Furukawa, J. I.; Kurogochi, M.;
Shimaoka, H.; Tada, M.; Nakanishi, K.; Ozaki, M.; Todo, S.; Nishimura, S. I. Mol.
Cell. Proteomics 2008, 7, 370–377. BlotGIycoABCTM, an integrated glycoblotting
technique for rapid and large scale clinical glycomics.
28. Naven, T. J. P.; Harvey, D. J. Rapid Commun. Mass Spectrom. 1996, 10, 829–834.
Cationic derivatization of oligosaccharides with Girard's T reagent for improved
performance in matrix-assisted laser desorption/ionization and electrospray mass
spectrometry.
29. Shinohara, Y.; Furukawa, J.-i.; Niikura, K.; Miura, N.; Nishimura, S.-I. Anal. Chem.
2004, 76, 6989–6997. Direct N-glycan profiling in the presence of tryptic peptides
on MALDI-TOF by controlled ion enhancement and suppression upon
glycan-selective derivatization.
30. Zhao, Y.; Kent, S. B. H.; Chait, B. T. Proc. Natl. Acad. Sci. USA 1997, 94,
1629–1633. Rapid, sensitive structure analysis of oligosaccharides.
31. Vila-Perelló, M.; Gallego, R. G.; Andreu, D. ChemBioChem 2005, 6, 1831–1838. A
simple approach to well-defined sugar-coated surfaces for interaction studies.
32. Nishimura, S.-I.; Niikura, K.; Kurogochi, M.; Matsushita, T.; Fumoto, M.; Hinou,
H.; Kamitani, R.; Nakagawa, H.; Deguchi, K.; Miura, N.; Monde, K.; Kondo, H.
Angew. Chem. Int. Ed. 2005, 44, 91–96. High-throughput protein glycomics:Combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass
spectrometry.
33. Shimaoka, H.; Kuramoto, H.; Furukawa, J.-i.; Miura, Y.; Kurogochi, M.; Kita, Y.;
Hinou, H.; Shinohara, Y.; Nishimura, S.-I. Chem. Eur. J. 2007, 13, 1664–1673.
One-pot solid-phase glycoblotting and probing by transoximization for
high-throughput glycomics and glycoproteomics.
34. Lin, C.; Lai, P.-T.; Liao, S. K.-S.; Hung, W.-T.; Yang, W.-B.; Fang, J.-M. J. Org.
Chem. 2008, 73, 3848–3853. Using molecular iodine in direct oxidative
condensation of aldoses with diamines: An improved synthesis of
aldo-benzimidazoles and aldo-naphthimidazoles for carbohydrate analysis.
35. Lin, C.; Hung, W.-T.; Chen, C.-H.; Fang, J.-M.; Yang, W.-B. Rapid Commun. Mass
Spectrom. 2010, 24, 85–94. A new naphthimidazole derivative for saccharide
labeling with enhanced sensitivity in mass spectrometry detection.
36. Cho, C.-C.; Liu, J.-N.; Chien, C.-H.; Shie, J.-J.; Chen, Y.-C.; Fang, J.-M. J. Org.
Chem. 2009, 74, 1549–1556. Direct amidation of aldoses and decarboxylative
amidation of α-keto acids: An efficient conjugation method for unprotected
carbohydrate molecules.
37. Honda, S.; Akao, E.; Suzuki, S.; Okuda, M.; Kakehi, K.; Nakamura, J. Anal.
Biochem. 1989, 180, 351–357. High-performance liquid chromatography ofreducing carbohydrates as strongly ultraviolet-absorbing and electrochemically
sensitive 1-phenyl-3-methyl5-pyrazolone derivatives.
38. Pitt, J. J.; Gorman, J. J. Anal. Biochem. 1997, 248, 63–75. Oligosaccharide
characterization and quantitation using 1-phenyl-3-methyl-5-pyrazolone
derivatization and matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry.
39. Shen, X.; Perreault, H. J. Chromatogr. A 1998, 811, 47–59. Characterization of
carbohydrates using a combination of derivatization, high-performance liquid
chromatography and mass spectrometry.
40. Tamura, T.; Wadhwa, M. S.; Rice, K. G. Anal. Biochem. 1994, 216, 335–344.
Reducing-end modification of N-linked oligosaccharides with tyrosine.
41. Stubbs, H. J.; Shia, M. A.; Rice, K. G. Anal. Biochem. 1997, 247, 357–365.
Preparative purification of tetraantennary oligosaccharides from human asialyl
orosomucoid.
42. Northen, T. R.; Lee, J.-C.; Hoang, L.; Raymond, J.; Hwang, D.-R.; Yannone, S. M.;
Wong, C.-H.; Siuzdak, G. Proc. Natl. Acad. Sci. USA 2008, 105, 3678–3683. A
nanostructure-initiator mass spectrometry-based enzyme activity assay.
43. Lee, J.-C.; Wu, C.-Y.; Apon, J. V.; Siuzdak, G.; Wong, C.-H. Angew. Chem. Int. Ed.
2006, 45, 2753–2757. Reactivity-based one-pot synthesis of the tumor-associatedantigen N3 minor octasaccharide for the development of a photocleavable
DIOS-MS sugar array.
44. Rohmer, M.; Meyer, B.; Mank, M.; Stahl, B.; Bahr, U.; Karas, M. Anal. Chem.
2010, 82, 3719–3726. 3-Aminoquinoline acting as matrix and derivatizing agent for
MALDI MS analysis of oligosaccharides.
45. Sato, C.; Inoue, S.; Matsuda, T.; Kitajima, K. Anal. Biochem. 1999, 266, 102–109.
Fluorescent-assisted detection of oligosialyl units in glycoconjugates.
46. Sato, C.; Inoue, S.; Matsuda, T.; Kitajima, K. Anal. Biochem. 1998, 261, 191–197.
Development of a highly sensitive chemical method for detecting α2→8-linked
oligo/polysialic acid residues in glycoproteins blotted on the membrane.
47. Hara, S.; Takemori, Y.; Yamaguchi, M.; Nakamura, M.; Ohkura, Y. Anal. Biochem.
1987, 164, 138–145. Fluorometric high-performance liquid chromatography of
N-acetyl- and N-glycolylneuraminic acids and its application to their
microdetermination in human and animal sera, glycoproteins, and glycolipids.
48. Inoue, S.; Lin, S.-L.; Lee, Y. C.; Inoue, Y. Glycobiology 2001, 11, 759–767. An
ultrasensitive chemical method for polysialic acid analysis.
49. Martín, M.; Vázquez, E.; Rueda, R. Anal. Bioanal. Chem. 2007, 387, 2943–2949.
Application of a sensitive fluorometric HPLC assay to determine the sialic acid
content of infant formulas.
50. Kakehi, K.; Kinoshita, M.; Kitano, K.; Morita, M.; Oda, Y. Electrophoresis 2001,
22, 3466–3470. Lactone formation of N-acetylneuraminic acid oligomers and
polymers as examined by capillary electrophoresis.
51. Cheng, M.-C.; Lin, C.-H.; Khoo, K.-H.; Wu, S.-H. Angew. Chem. Int. Ed. 1999, 38,
686–689. Regioselective lactonization of α-(2→8)-trisialic acid.
52. Galuska, S. P.; Geyer, R.; Mühlenhoff, M.; Geyer, H. Anal. Chem. 2007, 79,
7161–7169. Characterization of oligo- and polysialic acids by MALDI-TOF-MS.
53. Galuska, S. P.; Geyer, H.; Bleckmann, C.; Röhrich, R. C.; Maass, K.; Bergfeld, A.
K.; Mühlenhoff, M.; Geyer, R. Anal. Chem. 2010, 82, 2059–2066. Mass
spectrometric fragmentation analysis of oligosialic and polysialic acids.
54. Nishikaze, T.; Takayama, M. Rapid Commun. Mass Spectrom. 2006, 20, 376–382.
Cooperative effect of factors governing molecular ion yields in
desorption/ionization mass spectrometry.
55. Baumgart, S.; Lindner, Y.; Kühne, R.; Oberemm, A.; Wenschuh, H.; Krause, E.
Rapid Commun. Mass Spectrom. 2004, 18, 863–868. The contributions of specific
amino acid side chains to signal intensities of peptides in matrix-assisted laser
desorption/ionization mass spectrometry.
56. Beardsley, R. L.; Reilly, J. P. Anal. Chem. 2002, 74, 1884–1890. Optimization of
guanidination procedures for MALDI mass mapping.
57. Beardsley, R. L.; Reilly, J. P. J. Proteome Res. 2002, 2, 15–21. Quantitation using
enhanced signal tags: A technique for comparative proteomics.
58. Kim, J.-S.; Kim, J.-H.; Kim, H.-J. Rapid Commun. Mass Spectrom. 2008, 22,
495–502. Matrix-assisted laser desorption/ionization signal enhancement of
peptides by picolinamidination of amino groups.
59. Pashkova, A.; Moskovets, E.; Karger, B. L. Anal. Chem. 2004, 76, 4550–4557.
Coumarin tags for improved analysis of peptides by MALDI-TOF MS and MS/MS.
1. Enhancement in MALDI MS signal intensities.
60. Dagnino, R.; Webb, T. R. Tetrahedron Lett. 1994, 35, 2125–2128. Improved
synthesis of arginine peptide aldehydes.
61. Seo, J.; Silverman, R. B. Tetrahedron Lett. 2006, 47, 4069–4073. Synthesis of
arginine-containing hydroxamate dipeptidomimetics.
62. Katritzky, A. R.; Meher, G.; Narindoshvili, T. J. Org. Chem. 2008, 73, 7153–7158.
Efficient synthesis of peptides by extension at the N- and C-terminii of arginine.
63. Peterlin-Masic, L.; Kikelj, D. Tetrahedron 2001, 57, 7073–7105. Arginine
mimetics.
64. ElAmin, B.; Anantharamaiah, G. M.; Royer, G. P.; Means, G. E. J. Org. Chem.
1979, 44, 3442–3444. Removal of benzyl-type protecting groups from peptides by
catalytic transfer hydrogenation with formic acid.
65. Han, S.-Y.; Kim, Y.-A. Tetrahedron 2004, 60, 2447–2467. Recent development of
peptide coupling reagents in organic synthesis.
66. Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827–10852. Amide
bond formation and peptide coupling.
67. Peng, Y.; Song, G. Catalysis Commun. 2007, 8, 111–114. Amino-functionalized
ionic liquid as catalytically active solvent for microwave-assisted synthesis of
4H-pyrans.
68. Harjani, J. R.; Friscic, T.; MacGillivray, L. R.; Singer, R. D. Dalton Trans. 2008,
4595–4601. Removal of metal ions from aqueous solutions using chelating
task-specific ionic liquids.
69. Shoji, A.; Kuwahara, M.; Ozaki, H.; Sawai, H. J. Am. Chem. Soc. 2007, 129,
1456–1464. Modified DNA aptamer that binds the (R)-isomer of a thalidomide
derivative with high enantioselectivity.
70. Menger, F. M.; Zhang, H. Journal of the American Chemical Society 2006, 128,
1414–1415. Self-adhesion among phospholipid vesicles.
71. Chen, C.-S.; Yu, Y.-P.; Lin, B.-C.; Gervay-Hague, J.; Fang, J.-M.; Hsu, C.-P.; Wu,
S.-H. Eur. J. Org. Chem. 2009, 2009, 3351–3356. The observation of the
C-H···Osp3 hydrogen bond in trisialic acid lactone and its implications for
cooperative lactonization.
72. Leleu, S.; Penhoat, M.; Bouet, A.; Dupas, G.; Papamicaël, C.; Marsais, F.; Levacher,
V. J. Am. Chem. Soc. 2005, 127, 15668–15669. Amine capture strategy for peptide
bond formation by means of quinolinium thioester salts.
73. Sedmera, P.; Halada, P.; Kubatova, E.; Haltrich, D.; Prikrylova, V.; Volc, J. J. Mol.
Catal. B: Enzym. 2006, 41, 32–42. New biotransformations of some reducing
sugars to the corresponding (di)dehydro(glycosyl) aldoses or aldonic acids using
fungal pyranose dehydrogenase.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48766-
dc.description.abstract醣分子是最常見且最具結構變異性的天然物,並且在生物體中支配著許多重要的生理功能。然而由於結構及組成的複雜度,嚴重阻礙了醣類領域的研究。在許多分析醣類的方法中,質譜法能針對醣分子進行精確、高靈敏度且快速的結構分析。但由於天然醣分子在質譜儀中的游離效率不佳,因此常藉由化學修飾幫助提升醣類在質譜中的偵測效率。
透過我們實驗室最近開發出的方法,以碘為氧化劑,還原性醣與胺類可藉由形成醯胺鍵結直接建立醣類偶合體。因此我們利用此氧化醯胺法來偶合寡醣與芳香烷基胺及含有精胺酸或苯基丙胺酸的胜肽。首先用一系列的胺類來修飾麥芽三醣(maltotriose, G3),並進行快速篩選醣類衍生物在介質輔助雷射脫附游離及電灑游離質譜中的訊號增強表現。篩選出的訊加強標誌亦可應用於修飾麥芽七醣(maltoheptaose, G7),以更進一步研究透過醣類衍生化所提升的質譜偵測效能。本研究結果指出,這些修飾訊號加強標誌的醣類分子的確可有效的增進醣類在質譜儀中的偵測靈敏度,尤其在介質輔助雷射脫附游離質譜法中,訊號增強效果特別明顯 (高達100 倍)。
另一方面,在碘/醋酸的條件下,利用新設計的二胺化合物以縮合法修飾G7 和唾液酸四聚體 (tetrasialic acid, SA4)。此二胺化合物含有精胺酸的基團,而這種修飾方法皆可將醛醣以及酮酸進行衍生化,並且有效的在介質輔助雷射脫附游離及電灑游離質譜中增強醣類分子的偵測訊號。唾液酸四聚體在此反應條件下,同時進行內脂化作用,因此其衍生物的質譜訊號增加450 倍以上。
zh_TW
dc.description.abstractCarbohydrates are the most abundant and structurally diverse natural products.They possess a large number of functionalities in biology. Nevertheless, their structural
complexities hamper the detailed understanding of their roles. Mass spectrometry has been proved to be a precise, high sensitive and fast tool for carbohydrates structural
analysis. Due to the low ionization efficiency of carbohydrates, derivatization has frequently used to improve the detection efficiency of oligosaccharides in mass spectrometry.
Recently, a direct conjugation method by forming a robust amide bond between amines and the reducing end of aldose was developed by our laboratory. Therefore, we utilized this oxidative amidation process for derivitizing oligosaccharide with aralkylamine and peptides containing arginine or phenylalanine moieties. Initially, maltotriose (G3) was modified with various amine tags for a rapid screening of their effects in amplification of the signal intensity in MALDI– and ESI–MS. The chosen signal enhancing tags were subsequently used to modify maltoheptaose (G7) for further sensitivity studies. Our results showed that these oligosaccharide derivatives indeed enhanced the detection sensitivity in mass spectrometry, particularly up to 100-fold enhancement in MALDI-MS.
On the other hand, tagging G7 or tetrasialic acid (SA4) with a new designed diamine tag through the iodine-promoted oxdative condensation was conducted. This diamine tag contained an arginine moiety, and this derivatization method was useful for not only aldoses but also ketoacids to show significant signal enhancement in both ESI–and MALDI–MS. Under the reaction conditions, tetrasialic acid also underwent intramolecular lactonization to give a derivative that exhibit more than 450-fold signal enhancement in MALDI–MS.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:12:52Z (GMT). No. of bitstreams: 1
ntu-99-R97223118-1.pdf: 4303489 bytes, checksum: 6fa4926c6ef060f22bc507bb21f1cafb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement ............................................................................................................ I
Abstract in Chinese ....................................................................................................... III
Abstract in English ......................................................................................................... V
Table of Contents ......................................................................................................... VII
Index of Figures ............................................................................................................ XI
Index of Schemes ......................................................................................................... XII
Index of Tables ........................................................................................................... XIV
Abbreviations ............................................................................................................... XV
Chpter 1. Introduction .................................................................................................... 1
1.1 Importance of Carbohydrates .............................................................................. 1
1.2 Analytical Methods for Carbohydrates ............................................................... 1
1.3 Mass Spectrometry of Carbohydrates ................................................................. 4
1.3.1 Electrospray Ionization/MS (ESI–MS) ......................................................... 4
1.3.2 Matrix-Assisted Laser Desorption/Ionization/MS (MALDI–MS) .............. 5
1.4 Derivatization Methods of Aldoses for Improved MS Analysis ........................ 6
1.4.1 Derivatization via Reductive Amination ....................................................... 7
1.4.2 Derivatization via Hydrazone Formation ..................................................... 9
1.4.3 Derivatization via Oxime Formation ........................................................... 11
1.4.4 Derivatization via Oxidative Condensation with Diamine ........................ 13
1.4.5 Derivatization via Oxidative Amidation ..................................................... 14
1.4.6 Other Derivatization Methods ..................................................................... 15
1.5 Modification Methods of Sialic Acids for Improved MS Analysis .................. 19
1.5.1 Derivatization with DMB ............................................................................. 19
1.5.2 Lactonization ................................................................................................. 20
1.6 Other Signal Enhancing Effects in Mass Spectrometry ................................... 21
1.6.1 Specific Amino Acids for Signal Enhancing in MALDI-MS ..................... 21
1.6.2 Derivatization of Peptides for Improved MALDI Signals......................... 22
Chapter 2. Results and Discussion ............................................................................... 26
2.1 Tagging Aldoses via Oxidative Amidation ........................................................ 26
2.2 Preliminary Screening of Peptide Tags on Glucose .......................................... 27
2.3 Synthesis and Mass Spectral Studies of Maltotriose Derivatives .................... 31
2.3.1 Modification of Maltotriose with Aralkylamines ....................................... 32
2.3.2 Modification of Maltotriose with Peptides .................................................. 36
2.3.3 Modification of Maltotriose with Hexaetheyleneglycol-Derived Amine .. 40
2.3.4 Modification of Maltotriose for Negative-Charged Detection .................. 43
2.3.5 Summary of the MS Behaviors of G3 Derivatives ..................................... 45
2.4 Modification of Maltoheptaose with Signal Enhancing Tags .......................... 48
2.5 Comparison of G7 Derivatives Prepared by Two Different Tagging Methods
............................................................................................................................... 51
2.6 Derivatization of Maltoheptaose via Oxidative Condensation with Diamine 54
2.6.1 Derivatization of Maltoheptaose with Diamine Tag .................................. 54
2.6.2 Mass Spectral Studies of Phenylenediamine Derivatized Maltoheptaose 56
2.7 Modification of Tetrasialic Acid via Oxidative Condensation with Diamine . 57
2.7.1 Derivatization of Tetrasialic Acid with Diamine Tag ................................ 57
2.7.2 Mass Spectral Studies of SA4-Arg Lactone Derivative ............................. 59
2.8 Conclusion ............................................................................................................ 61
2.9 Future Application ............................................................................................... 65
Chapter 3. Experimental Section ................................................................................. 66
3.1 General Part ......................................................................................................... 66
3.2 General Procedure for Oxidative Amidation of Aldoses with Primary Amines
............................................................................................................................... 67
3.3 General Procedure for Oxidative Amidation of Aldoses with Peptides .......... 67
3.4 General Procedure for Iodine-Promoted Condensation of Aldose/Ketoacid
with o-Phenylenediamine Tag ............................................................................. 68
3.5 General Procedure for Preparation of TFA Salts of Dipeptide Methyl Esters
............................................................................................................................... 68
3.6 General Procedure for Preparation of Boc-Dipeptides .................................... 69
3.7 General Procedure for Preparation of Boc-Peptide Methyl Esters ................ 69
3.8 MALDI–TOF MS Analysis ................................................................................. 70
3.9 ESI–ion trap MS Analysis ................................................................................. 71
3.10 Fluorescence Spectral Study ............................................................................. 71
3.11 Synthesis and Characterization of Compounds .............................................. 72
References .................................................................................................................... 103
Appendix ...................................................................................................................... 115
dc.language.isoen
dc.subject衍生化zh_TW
dc.subject質譜zh_TW
dc.subject訊號增強zh_TW
dc.subject醣類zh_TW
dc.subjectsignal enhancementen
dc.subjectderivatizationen
dc.subjectcarbohydratesen
dc.subjectmass spectrometryen
dc.title使用訊號加強標誌於醣類分子之質譜研究zh_TW
dc.titleMass Spectrometric Analysis of Carbohydrate Molecules
with Signal Enhancing Tags
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳平,陳仲瑄
dc.subject.keyword醣類,衍生化,訊號增強,質譜,zh_TW
dc.subject.keywordcarbohydrates,derivatization,signal enhancement,mass spectrometry,en
dc.relation.page169
dc.rights.note有償授權
dc.date.accepted2010-09-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved