請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48763
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪傳揚 | |
dc.contributor.author | Sin-Yuan Cheng | en |
dc.contributor.author | 鄭鑫源 | zh_TW |
dc.date.accessioned | 2021-06-15T07:12:41Z | - |
dc.date.available | 2021-08-18 | |
dc.date.copyright | 2011-09-15 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | 戶刈義次 (1963) 作物學實驗法.東京農業學會
楊 民宇 (2008) 水稻 PDR 類ABC 轉運蛋白分子特性分析及其對重金屬鎘、銅及鋅之反應. 國立台灣大學生物資源暨農學院農業化學系碩士論文 Ahmed A, Evans HJ (1960) Cobalt: a micronutrient for the growth of soybean plants under symbiotic conditions. Soil Sci 90: 205-210 Ames GF (1986) Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55: 397-425 Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, Bradshaw RA (1995) Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A 92: 7714-7718 Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146: 762-771 Baes CF, Sharp RD (1983) A proposal for estimation of soil leaching and leaching constants for use in assessment models. J Environ Qual 12: 17-28 Baize D (1997) Total contents of heavy metals in soils. INRA, Paris Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37: 201-206 Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52: 485-498 Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19: 131-147 Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8: 494-500 Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145: 478-490 Burnett WV (1997) Northern blotting of RNA denatured in glyoxal without buffer recirculation. Biotechniques 22: 668-671 Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22: 904-917 Campbell EJ, Schenk PM, Kazan K, Penninckx IA, Anderson JP, Maclean DJ, Cammue BP, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133: 1272-1284 Cao ZY, Huang BK, Wang QY, Xuan W, Ling TF, Zhang B, Chen X, Nie L, Shen WB (2007) Involvement of carbon monoxide produced by heme oxygenase in ABA-induced stomatal closure in Vicia faba and its proposed signal transduction pathway. Chinese Science Bulletin 52: 2365-2373 Chen S, Sanchez-Fernandez R, Lyver ER, Dancis A, Rea PA (2007) Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282: 21561-21571 Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51: 951-960 Clancy M, Hannah LC (2002) Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130: 918-929 Collins RN, Bakkaus E, Carriere M, Khodja H, Proux O, Morel JL, Gouget B (2010) Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato). Environ Sci Technol 44: 2904-2910 Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12: 3678-3688 Cowles JR, Evans HJ, Russell SA (1969) B12 coenzyme-dependent ribonucleotide reductase in Rhizobium species and the effects of cobalt deficiency on the activity of the enzyme. J Bacteriol 97: 1460-1465 Cowman AF, Galatis D, Thompson JK (1994) Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci U S A 91: 1143-1147 Ducos E, Fraysse S, Boutry M (2005) NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS Lett 579: 6791-6795 Eichhorn H, Klinghammer M, Becht P, Tenhaken R (2006) Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot 57: 2193-2201 Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58: 137-171 Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57: 921-930 Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL (2007) The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144: 1467-1480 Frelet-Barrand A, Kolukisaoglu HU, Plaza S, Ruffer M, Azevedo L, Hortensteiner S, Marinova K, Weder B, Schulz B, Klein M (2008) Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol 49: 557-569 Froshauer S, Beckwith J (1984) The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259: 10896-10903 Gad N, Atta-Aly M (2006) Effect of cobalt on the formation, growth and development of adventitious roots in tomato and cucumber cuttings. J Appl Sci Res 2: 423-429 Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Muller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20: 1875-1887 Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C (2008) AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8: 22 Garcia O, Bouige P, Forestier C, Dassa E (2004) Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol 343: 249-265 Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580: 1094-1102 Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16: 1812-1826 Gottesman MM, Pastan I (1988) Resistance to multiple chemotherapeutic agents in human cancer cells. Trends Pharmacol Sci 9: 54-58 Grec S, Vanham D, de Ribaucourt JC, Purnelle B, Boutry M (2003) Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35: 237-250 Grover S, Purves WK (1976) Cobalt and plant development: interactions with ethylene in hypocotyl growth. Plant Physiol 57: 886-889 Hassinen VH, Tervahauta AI, Halimaa P, Plessl M, Peraniemi S, Schat H, Aarts MG, Servomaa K, Karenlampi SO (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225: 977-989 Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278: 609-614 Hewitt EJ (1953) Metal interrelationship in plant nutrition. J Exp Bot 4: 59-64 Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67-113 Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11: 918-926 Hoshikawa K (1989) The growing rice plant. Nobunkyo, Tokyo Huang CF, Yamaji N, Ma JF (2010) Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol 153: 1669-1677 Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21: 655-667 Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346: 362-365 IARC (1991) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, Lyon Ito H, Gray WM (2006) A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiol 142: 63-74 Jaleel CA, K. J, Chang-Xing Z, Iqbal M (2009) Low Concentration of Cobalt Increases Growth, Biochemical Constituents, Mineral Status and Yield in Zea Mays J Sci Res 1: 128-137 Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol 131: 1169-1177 Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13: 1095-1107 Jeong YM, Mun JH, Lee I, Woo JC, Hong CB, Kim SG (2006) Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol 140: 196-209 Kanai M, Nishimura M, Hayashi M (2010) A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant J 62: 936-947 Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2009) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107: 2355-2360 Kerr ID, Berridge G, Linton KJ, Higgins CF, Callaghan R (2003) Definition of the domain boundaries is critical to the expression of the nucleotide-binding domains of P-glycoprotein. Eur Biophys J 32: 644-654 Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140: 922-932 Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50: 207-218 Kim DY, Jin JY, Alejandro S, Martinoia E, Lee Y (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139: 170-180 Kim JH, Gibb HJ (2006) Cobalt and Inorganic Cobalt Compounds. World Health Organization King LD (1988) Retention of metals by several soils of the southeastern United States. J Environ Qual 17: 239-246 Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580: 1112-1122 Klein M, Geisler M, Suh SJ, Kolukisaoglu HU, Azevedo L, Plaza S, Curtis MD, Richter A, Weder B, Schulz B, Martinoia E (2004) Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J 39: 219-236 Klein M, Martinoia E, Hoffmann-Thoma G, Weissenbock G (2000) A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant J 21: 289-304 Klein M, Martinoia E, Hoffmann-Thoma G, Weissenbock G (2001) The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific. Phytochemistry 56: 153-159 Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C (2003) The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33: 119-129 Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47: 309-318 Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261 Kolukisaoglu HU, Bovet L, Klein M, Eggmann T, Geisler M, Wanke D, Martinoia E, Schulz B (2002) Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta 216: 107-119 Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40: 37-44 Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2009) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107: 2361-2366 Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225: 1447-1458 Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41: 353-363 Lee EK, Kwon M, Ko JH, Yi H, Hwang MG, Chang S, Cho MH (2004) Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134: 528-538 Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo JY, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10: 1217-1223 Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138: 827-836 Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19: 1838-1850 Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273: 22181-22187 Linton KJ (2007) Structure and function of ABC transporters. Physiology (Bethesda) 22: 122-130 Liu J, Reid RJ, Smith FA (2000) The mechanism of cobalt toxicity in mung beans. Physiol Plant 110: 104-110 Luo B, Xue XY, Hu WL, Wang LJ, Chen XY (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48: 1790-1802 Mahara Y, Kudo A (1981) Interaction and mobility of cobalt-60 between water and sediments in marine environments possible effects by acid rain. Water Res 15: 413-419 Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schulz B (2002) Multifunctionality of plant ABC transporters--more than just detoxifiers. Planta 214: 345-355 Mentewab A, Stewart CN, Jr. (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23: 1177-1180 Mitchell RL (1964) Chemistry of the Soil. Reinhold, New York Moons A (2003) Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett 553: 370-376 Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149: 894-904 Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes VR (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283: 9633-9641 Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21: 3326-3338 Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423: 999-1002 Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13: 2441-2454 Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338: 47-49 Ozolina NV, Pradedova EV, Platonova TA, Salyaev RK (2004) Detection of vanadate-inhibited ATPase activity on the red beet tonoplast and its relationship with ABC-transporters. Dokl Biochem Biophys 396: 158-160 Palit S, Sharma A, Talukder G (1994) Effects of cobalt on plants. The Bot Rev 60: 149-181 Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Hofer R, Schreiber L, Chory J, Aharoni A (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145: 1345-1360 Panikashvili D, Shi JX, Schreiber L, Aharoni A (2010) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol Pearce SR, Mimmack ML, Gallagher MP, Gileadi U, Hyde SC, Higgins CF (1992) Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium. Mol Microbiol 6: 47-57 Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914-918 Petrovich RM, Ruzicka FJ, Reed GH, Frey PA (1991) Metal cofactors of lysine-2,3-aminomutase. J Biol Chem 266: 7656-7660 Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306: 702-704 Ravna AW, Sager G (2008) Molecular model of the outward facing state of the human multidrug resistance protein 4 (MRP4/ABCC4). Bioorg Med Chem Lett 18: 3481-3483 Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58: 347-375 Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From Vacuolar Gs-X Pumps to Multispecific Abc Transporters. Annu Rev Plant Physiol Plant Mol Biol 49: 727-760 Robson AD, Dilworth MJ, Chatel DL (1979) Cobalt and nitrogen fixation in Lupinus angustifolius L. I. Growth, nitrogen concentrations and cobalt distribution. New Phytol 83: 53-62 Rommens CM (2006) Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends Plant Sci 11: 317-319 Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8: 1444-1453 Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC (1990) Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4: 1207-1214 Ruzicka K, Strader LC, Bailly A, Yang H, Blakeslee J, Langowski L, Nejedla E, Fujita H, Itoh H, Syono K, Hejatko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy AS, Friml J (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci U S A 107: 10749-10753 Sanchez-Fernandez R, Davies TG, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276: 30231-30244 Sanchez-Fernandez R, Rea PA, Davies TG, Coleman JO (2001) Do plants have more genes than humans? Yes, when it comes to ABC proteins. Trends Plant Sci 6: 347-348 Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579: 5399-5406 Sauna ZE, Kim IW, Ambudkar SV (2007) Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr 39: 481-487 Sharma R, Awasthi YC, Yang Y, Sharma A, Singhal SS, Awasthi S (2003) Energy dependent transport of xenobiotics and its relevance to multidrug resistance. Curr Cancer Drug Targets 3: 89-107 Shedd KB (1993) The materials flow of cobalt in the United States. United States Geological Survey, Bureau of Mines, Reston, VA Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127: 1466-1475 Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25: 930-937 Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci U S A 100: 751-756 Sidler M, Hassa P, Hasan S, Ringli C, Dudler R (1998) Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10: 1623-1636 Smith IC, Carson BL (1981) Trace Metals in the Environment. Ann Arbor Science Publishers, Ann Arbor, Mich. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21: 914-919 Stefkova J, Poledne R, Hubacek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53: 235-243 Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21: 1992-2007 Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139: 341-352 Swarbreck D, Ripoll PJ, Brown DA, Edwards KJ, Theodoulou F (2003) Isolation and characterisation of two multidrug resistance associated protein genes from maize. Gene 315: 153-164 Terasaka K, Shitan N, Sato F, Maniwa F, Ueda K, Yazaki K (2003) Application of vanadate-induced nucleotide trapping to plant cells for detection of ABC proteins. Plant Cell Physiol 44: 198-200 Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta 1465: 79-103 Tosh S, Choudhuri MA, Chatterjee SK (1979) Retardation of lettuce (Lactuca sativa) leaf senescence by cobalt ions. Indian J Exp Biol 17: 1134-1136 Trombik T, Jasinski M, Crouzet J, Boutry M (2008) Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia. Plant Mol Biol 66: 165-175 van den Brule S, Muller A, Fleming AJ, Smart CC (2002) The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J 30: 649-662 Vanselow AP (1966) Criteria for Plants and Soils. University of California, Div. of Agric. Sciences Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13: 151-159 Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945-951 Weise A, Lalonde S, Kuhn C, Frommer WB, Ward JM (2008) Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. Plant Mol Biol 68: 251-262 Windsor B, Roux SJ, Lloyd A (2003) Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nat Biotechnol 21: 428-433 Winje BA, Mannsaker T, Langeland N, Heldal E (2008) Drug resistance in tuberculosis. Tidsskr Nor Laegeforen 128: 2588-2592 Wright PK (2008) Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent Pat Anticancer Drug Discov 3: 137-147 Xu S, Zhang B, Cao ZY, Ling TF, Shen WB (2010) Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato. Biometals 24: 181-191 Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119: 75-83 Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148: 881-893 Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J Exp Bot 53: 727-735 Yasuno N, Takamure I, Kidou S, Tokuji Y, Ureshi AN, Funabiki A, Ashikaga K, Yamanouchi U, Yano M, Kato K (2009) Rice shoot branching requires an ATP-binding cassette subfamily G protein. New Phytol 182: 91-101 Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8: 301-307 Yazaki K, Shitan N, Takamatsu H, Ueda K, Sato F (2001) A novel Coptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. J Exp Bot 52: 877-879 Yew WW, Leung CC (2008) Management of multidrug-resistant tuberculosis: Update 2007. Respirology 13: 21-46 Yu YB, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethyoxyvinylglycine and cobalt ion. Plant Physiol 64: 1074-1077 Zientara K, Wawrzynska A, Lukomska J, Lopez-Moya JR, Liszewska F, Assuncao AG, Aarts MG, Sirko A (2009) Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J Biotechnol 139: 258-263 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48763 | - |
dc.description.abstract | ABC 轉運蛋白 (ATP-Binding Cassette transporter) 為一廣泛存在於各物種的龐大膜轉運蛋白家族,在多種基質的運輸上扮演重要角色,包括胺基酸、多肽鏈、脂質及金屬離子等。水稻具有超過130個 ABC 轉運蛋白,但對其功能了解非常少。我們過去的研究發現,屬於水稻PDR類的ABC轉運蛋白基因OsABCG36,其表現受到多種重金屬高度誘導。為瞭解其在水稻中扮演的角色,本研究進一步針對OsABCG36進行功能性分析。酵母菌功能性分析結果顯示,大量表現 OsABCG36 會專一性的促進鈷顯著累積而對酵母菌造成毒害。水稻功能性分析顯示,OsABCG36-RNAi基因靜默水稻對於鈷具有較高的敏感性;相反地,OsABCG36-OE 大量表現水稻具有較高的鈷耐受性。鈷累積量分析發現不論OsABCG36-RNAi及OsABCG36-OE都與野生型無明顯差異。次細胞定位結果顯示,OsABCG36-GFP融合蛋白可能位於葉綠體與細胞膜上。基因表現分析結果顯示,OsABCG36 基因表現會隨著鈷處理濃度和時間而受到大幅誘導,其中梗稻TNG67和秈稻TN1根部以2.5 mM氯化鈷處理,可分別誘導856倍及2536倍,在地上部則分別誘導22倍及9.8倍。啟動子特性分析顯示,POsABCG36(1K)/GUS、POsABCG36(1.5K)/GUS以及POsABCG36(2K)/GUS轉殖水稻在葉、葉環、葉鞘及節皆有GUS表現,並受鈷誘導。分析隱子 (intron) 對OsABCG36啟動子的活性影響發現,第一個隱子可增加重金屬誘導性,第二個隱子可增強啟動子在葉部活性,第三個隱子則抑制啟動子活性。以鈷處理水稻幼苗發現,高濃度的鈷會造成水稻的毒害,並抑制水稻幼苗根部的發育。以上結果顯示,OsABCG36是一個鈷轉運蛋白,在酵母菌中可能為一個鈷吸收轉運蛋白,在植物中,OsABCG36可能位於葉綠體與細胞膜上,並影響細胞內的鈷分布 | zh_TW |
dc.description.abstract | ATP-binding cassette (ABC) transporters is a membrane transporter superfamily which ubiquitously existed in all living organisms, and play important roles in transporting various substances, including amino acids, polypeptides, lipids and metal ions. Rice has more than 130 ABC transporters, but little is known about their functions. Our previous study indicated that the rice PDR-type ABC transporter OsABCG36 was highly induced by various heavy metals. To dissect the function of OsABCG36, yeast and rice were used to evaluate the transport of metals. Overexpression of OsABCG36 increased cobalt (Co) accumulation and caused toxic effect to yeast. In rice, OsABCG36-RNAi transgenic rice showed a Co sensitive phenotype. Conversely, OsABCG36-OE transgenic rice showed a Co tolerant phenotype. However, the Co concentration of OsABCG36-RNAi and OsABCG36-OE was similar as compared to wild type. Subcellular localization analysis showed that OsABCG36 localized at chloroplast and plasma membrane. The analysis of OsABCG36 expression indicated the transcript level of OsABCG36 was highly induced in both japonica and indica rice, moreover, it was increased along with the increase of Co concentration and time. In addition, treatment of japonica and indica rice with 2.5 mM CoCl2, the transcript of OsABCG36 in root was increased 856 folds and 2536 folds, and that in shoot was also increased 22 folds and 9.8 folds, respectively. According to the analysis of promoter characterization, GUS was induced by Co and that accumulated in blade, collar, sheath, and node of POsABCG36(1K)/GUS, POsABCG36(1.5K)/GUS and POsABCG36(2K)/GUS transgenic rice. The activity of OsABCG36 promoter was also affected by itself introns. The first intron of OsABCG36 could enhance the inducibility of OsABCG36 promoter to heavy metals; the second one could enhance the OsABCG36 promoter activity in shoot; the third one inhibited the promoter activity. To figure out the physiological role of Co in rice seedlings, the treatment of various Co concentrations was conducted. Higher Co concentrations (> 50 uM) could result in Co toxicity in rice seedling, and also inhibit the root growth. Eventually, OsABCG36 is a Co transporter, and might have influx function in yeast. In plants, OsABCG36 might localize at chloroplast and plasma membrane, and function as cellular Co distribution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:12:41Z (GMT). No. of bitstreams: 1 ntu-100-R98623001-1.pdf: 8130196 bytes, checksum: db93fb8811a212914feaffe257b204d9 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄 I
圖目錄 III 表目錄 IV 中文摘要 V Abstract VI 縮寫字對照表 VIII 壹、緒論 1 一、ABC轉運蛋白的發現 1 二、ABC轉運蛋白的基本性質 2 三、ABC轉運蛋白的命名及分類 4 四、植物ABC轉運蛋白 6 五、植物 ABC轉運蛋白的功能 8 六、鈷的基本性質及分布 17 七、鈷的生理作用 19 八、鈷的傳輸及吸收 20 貳、研究目的 22 參、材料與方法 23 一、質粒的構築 23 二、水稻基因轉殖 28 三、酵母菌功能性分析 30 四、水稻基因表現分析材料準備與處理 34 五、蛋白質次細胞定位分析 41 六、OsABCG36啟動子特性分析 43 七、鈷對水稻的生理影響分析 44 八、統計分析 44 肆、結果 45 一、水稻OsABCG36序列及結構分析 45 二、OsABCG36酵母菌功能分析 45 三、水稻OsABCG36-OE轉殖株及OsABCG36-RNAi 轉殖株分析 47 四、水稻OsABCG36次細胞定位分析 49 五、OsABCG36基因表現特性分析 49 六、OsABCG36啟動子特性分析 50 七、鈷對水稻的生理影響 51 伍、討論 53 陸、參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 水稻 ATP-Binding Cassette (ABC) 轉運蛋白
OsABCG36 的功能性分析 | zh_TW |
dc.title | Functional analysis of Rice ATP-Binding Cassette (ABC) Transporter OsABCG36 | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高景輝,黃鵬林,葉靖輝,葉國楨 | |
dc.subject.keyword | ABC 轉運蛋白,鈷,重金屬,水稻, | zh_TW |
dc.subject.keyword | ABC transporter,cobalt,heavy metal,rice, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。