請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗 | |
| dc.contributor.author | Yung-Hsiang Lan | en |
| dc.contributor.author | 藍永翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:12:28Z | - |
| dc.date.available | 2010-09-29 | |
| dc.date.copyright | 2010-09-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-09-23 | |
| dc.identifier.citation | 劉棠瑞 1960 臺灣木本植物圖誌。
Benzian, B. (1967) Effects of nitrogen and potassium concentrations in conifer seedlings on frost damage. For. Abstr. 28, 74, Extracted from Rep. Rothamstead Exp. Sta. 1965, 1966, 58-59 (cited in Jalkanen et al., 1998). Chapin, F.S., Schulze, E.D. and Mooney, H.A. (1990) The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21: 423-447. Chapin III, F.S. and Keorowski, R.A. (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64(2): 376-391. Dickson, R.E. (1979) Analytical procedures for the sequential extraction of 14C-labeled constituents from leaves, bark and wood of cottonwood plants. Physiologia Plantarum 45: 480-488. Egger, B., Einig, W., Schlereth, A., Wallenda, T., Magel, E., Loewe, A. and Hampp, R. (1996) Carbohydrate metabolism in one- and two-year-old spruce needles, and stem carbohydrates from three months before until three months after bud break. Physiologia Plantarum 96: 91-100. Ewers, R.C. and Schmid, R. (1981) Longevity of needle fascicles of Pinus longaeva (Bristlestone pine) and other North American pines. Oecologia 51: 107-115. Field, C. (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56: 341-347. Finazzo, S.F., Davenport, T.L. and Schaffer, B. (1994) Partitioning of photoassimilates in avocado (Perea americana Mill) during flowering and fruit set. Tree Physiology 14: 153-164. Fisher, C. and Höll, W. (1991) Food reserves of Scots pine (Pinus sylvestris L.) I. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees 5: 187-195. Franklin, O. and Ågren, G.I. (2002) Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Functional Ecology 16: 727-733. Friedland, A.J., Hawley, G.J., Gregory, R.A. (1988) Red spruce (Picea rubens Sarg.) foliar in Northern Vermont and New York, USA. Plant and Soil 105: 189-193. Gordon, J.C. and Larson, P.R. (1968) Seasonal course of photosynthesis, respiration, and distribution of 14C in young Pinus resinosa trees as related to wood formation. Plant Physiology 43: 1617-1624. Haissig, B. and Dickson, R.E. (1979) Starch measurement in plant tissue using enzymatic hydrolysis. Physiologia Plantarum 47: 151-157. Hansen, J. and Mǿller, I. (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry 68: 87-94. Hansen, J., Vogg, G. and Beck, E. (1996) Assimilation, allocation and utilization of carbon by 3-year-old Scots pine (Pinus sylvestris L.) trees during winter and early spring. Trees 11: 83-90. Helmisaari, H.-S. (1992) Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiology 10: 45-58. Hoch, G., Richter, A., and Körner, C. (2003) Non-structural carbon compounds in temperate forest trees. Plant, Cell and Environment 26: 1067-1081. Jain, N., Dhawan, K, Malhotra, A. and Singh, R. (2003) Biochemistry of fruit ripening of guava (Psidium guajava L.): compositional and enzymatic changes. Plant Foods for Human Nutrition 58: 309-315. Jalkanen, R.E., Redfern, D.B., Sheppard, L.J. (1998) Nutrient deficits increase frost hardiness in Sitka spruce (Picea sitchensis) needles. Forest Ecology and Management 107: 191-201. Johansson, M.-B. (1995) The chemical composition of needle and leaf litter from Scots pines, Norway spruce and white birch in Scandinavian forests. Forestry 68(1): 49-62. Johnson, D.W., Richter, D.D., Lovett, G.M., Lindberg, S.E. (1985) The effects of atmospheric deposition on potassium, calcium, and magnesium cycling in two deciduous forests. Canadian Journal of Forest Research 15: 773-782. Kayama, M., Kitaoka, S., Wang, W., Choi, D. and Koike, T. (2007) Needle longevity, photosynthetic rate and nitrogen concentration of eight spruce taxa [planted in northern Japan. Tree Physiology 27: 1585-1593. Kayama, M., Sasa, K. and Koike, T. (2002) Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology 22: 707-716. Klõšeiko, J. (2004) Relationship of whole tree carbohydrates and tree biomass in Norway spruce with the wood ash treated soil. Forestry Studies 41: 42-52. Körner, C. (2003) Carbon limitation in trees. Journal of Ecology 91: 4-17. Kozlowski, T.T. and Pallardy, S.G. (1997) Growth control on woody plants. Academic Press, Inc. Kozlowski, T.T. (1992) Carbohydrate sources and sinks in woody plants. Botanical Review 58: 107-222. Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E.N., Cremata, J. and Sánchez, J.C. (2008) Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation. Biologicals 36: 134-141. Myre, R. and Camiré C. (1996) The effect of crown position and date of sampling on biomass, nutrient concentrations and contents of needles and shoots in European larch. Trees 10: 339-350. Noland, T.L., Mohammed, G.H. and Scott, M. (1996) The dependence of root growth potential on light level, photosynthetic rate, and root starch content in jack pine seedlings. New Forests 13: 104-119. Oleksyn, J., Zytkowial, R., Karolewski, P., Reich, P.B. and Tjoelker, M.G. (2000) Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiology 20: 837-847. O’Neill, A.L., Kupiec, J.A. and Curran, P.J. (2002) Biochemical and reflectance variation throughout a Sitka spruce canopy. Remote Sensing of Environment 80: 134-142. Osaki, M., Shinano, T. and Tadano, T. (1991) Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Science and Plant Nutrition 37(1): 117-128. Pallardy, S.G. (2008) Physiology of Woody Plants. 3rd ed. Academic Press, Inc. Richardson, A.D. (2004) Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant and Soil 260: 291-299. Ryan, M.G. (1991 a) A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology 9: 255-266. Ryan, M.G. (1991 b) The effect of climate change on plant respiration. Ecological Applications 1: 157-167. Schädel, C. Blöchl, A., Richter, A. and Hoch, G. (2009) Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiology 29: 901-911. Schoettle, A.W. and Smith, W.K. (1998) Interrelationships among light, photosynthesis and nitrogen in the crown of mature Pinus contorta ssp. latifolia. Tree Physiology 19: 13-22. Sharkey, P.J. and Pate, J.S. (1976) Translocation from leaves to fruits of a legume, studied by a phloem bleeding technique: diurnal changes and effects of continuous darkness. Planta 128: 63-72. Sinnott, E.W (1918) Factors determining character and distribution of food reserve in woody plants. Botanical Gazette 66(2): 162-175. Son Y. and Gower, S.T. (1992) Nitrogen and phosphorus distribution for five plantation species in southwestern Wisconsin. Forest Ecology and Management 53: 175-193. Stockfors, J. and Linder, S. (1998) The effect of nutrition on the seasonal course of needle respiration in Norway spruce stands. Trees 12: 130-138. Taiz, L. and Zeiger, E. (2002) Plant Physiology. 3rd ed. Sinauer Associates, Inc. Tausz, M., Zellnig, G., Bermadinger-Stabentheiner, E., Grill, D., Katzensteiner, K., Glatzel, G. (1996) Physiological, structural, and nutritional parameters of Norway spruce needles from declining forest stands in Austria. Canadian Journal of Forest Research 26: 1769-1780. Thelin, G., Rosengren, U., Callesen, I., Ingerslev, M. (2002) The nutrient status of Norway spruce in pure and in mixes-species stands. Forest Ecology and Management 160: 115-125. Thomas, H. and Stoddart, J.L. (1980) Leaf Senescence. Annual Review of Plant Physiology 31: 83-111. Ursino, D.J., Nelson, C.D. and Krotkov, G. (1968) Seasonal changes in the distribution of photoassimilated 14C in young pine plants. Plant Physiology 43: 845-852. Van den Driessche, R. (1974) Prediction of mineral nutrient status of trees by foliar analysis. The Botanical Review 40: 347-394. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48759 | - |
| dc.description.abstract | 碳、氮為植物體內含量極豐的兩種元素。前者可概分為結構性碳(如木質素、纖維素、半纖維素)及非結構性碳(如醣類、脂質、二次代謝物),後者則大致可區分為有機氮(如蛋白質、胺基酸)及無機氮(如硝酸根離子)。本研究以南投塔塔加鞍部的臺灣雲杉(Picea morrisonicola)為對象,分冠層為六個不同部位,並區分針葉年齡,探討葉部全氮、全碳及非結構性碳水化合物(即醣類,以下簡稱TNC)的濃度與分布。其中TNC定義為可溶性醣類及澱粉兩種物質的加總。
在季節變化方面,全氮濃度在生長季初始、芽苞初脫鱗(bud-break)而生長時濃度特別高。隨著針葉完全開展(flush),其濃度則受到增加之生物量(biomass)稀釋。可溶性醣類和TNC濃度呈現相同趨勢,芽苞初脫鱗時濃度最少,展葉後逐漸累積直至隔年3月(葉齡10個月),在新芽苞於生長季脫鱗展葉時再度下降。推論TNC會由其他年齡的針葉轉移至新生針葉,提供初展葉時的碳水化合物來源。澱粉的濃度則上下震盪,大約維持10%濃度;由於光合作用旺盛時,產生過多之葡萄糖會以蔗糖或澱粉形式暫存,故推論澱粉濃度的多寡可能和枝條、針葉的生長相關。 在冠層位置方面,全氮、全碳及澱粉的濃度基本上不受影響;可溶性醣類及TNC則傾向分布於冠層上部及外側的區域。推論這些部位因受光量強,光合作用較為旺盛。 隨著葉齡增長,針葉內的全氮濃度顯著減少,可溶性醣類及TNC濃度顯著增加,全碳及澱粉濃度則不受影響。推論氮元素傾向分布於新生針葉,而醣類及TNC則會隨葉齡不斷累積。 整體而言,本研究中探討的物質有明顯的季節性動態,並分別受到葉齡及冠層位置的影響。 | zh_TW |
| dc.description.abstract | Carbon and nitrogen both are very important elements in plants. Carbon can be divided into structural carbon (like lignin, cellulose and hemicellulose) and nonstructural carbon (like carbohydrate, lipid and metabolite). Nitrogen can be divided into organic nitrogen (like protein and amino acid) and inorganic nitrogen (like nitrate). In this study, Taiwan spruce (Picea morrisonicola) was used to discuss the distribution and dynamics of total nitrogen, total carbon and carbohydrates in green needles, with different canopy positions and needle ages. The carbohydrates here are defined as soluble sugars plus starch.
Total nitrogen concentration after bud-breaking in early growth season is particularly high. With the needle flushing, it was diluted by increasing biomass. Soluble sugars and non-structural carbohydrates showed the same trend that accumulated until the following March (needle ages was ten months) after bud-breaking, and decreased in May when next bud-breaking. It showed that carbohydrates in older needles would be transferred into new ones, providing the nutrient sources for beginning of growth. Starch concentration up and down repeated and maintain about 10 %. If forming too much glucose through photosynthesis, it will be a temporary storage by converting to sucrose or starch, so that starch contents may be associated with needle growth and branch elongation. Besides to be the energy sources of respiration and physiological reactions, carbohydrates could convert to structural materials, lipids, and metabolites through kinds of biosynthetic pathway. Soluble sugars and carbohydrates tended to distribute to upper and outer in crown, showing that these parts of crown might receive more irradiation and could product more photosynthetic materials. Total carbon and starch in needles only had the seasonal trends, and no differences no matter which canopy position or needle ages. With needle age increasing, total nitrogen in green needles was deceasing obviously, soluble sugars and carbohydrates were increasing instead. It showed that nitrogen tended to distribute to younger needles, but soluble sugars and carbohydrates tended to be accumulated in older ones. As a whole, the substances in this study had significantly seasonal trends, and affected by canopy position and needle age separately. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:12:28Z (GMT). No. of bitstreams: 1 ntu-99-R95625004-1.pdf: 2471838 bytes, checksum: f8a23b227aae76742e487035df76660d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書……………………………………………………………………….i
謝誌……………………………………………………………………………...…….ii 中文摘要……………………………………………………………………………....v 英文摘要……………………………………………………………………………...vi 目錄………………………………………………………………………………….viii 表目錄……………………………………………………………………………….xiv 圖目錄…………………………………………………………………………......…xv 1. 前言……………………………………………….………………………………..1 2. 文獻研究………………………………………….………………………………..2 2.1. 氮元素…………..………..…………………….……………...………………..2 2.2. 碳元素…………..…………………..………….………………………...……..4 3. 樣區概述及實驗方法…………………………….………………………………..7 3.1. 樣區概述……………………..…………...………………………………..…...7 3.2. 研究樹種概述………………..………...……...…………………………..……9 3.3. 採樣方法及樣本前處理……..……………………...……………...……..……9 3.4. 實驗方法……………………..…………………………..………………..…....9 3.4.1. 測定全碳氮……………………………………...……………………......…9 3.4.2. 測定可溶性醣類、澱粉及TNC濃度………………………...…………….11 3.5. 數據分析……………………..…………………………………………...... ...13 4. 結果……………………………………………………………………………….16 4.1 全氮濃度……………………………………………………………………….16 4.1.1 季節性動態…………………………………………………………………16 4.1.1.1 天然老熟林……………………………………………………………...16 4.1.1.2 天然幼齡林……………………………………………………………...16 4.1.1.3 人工幼齡林……………………………………………………………...17 4.1.2 葉齡動態……………………………………………………………………17 4.1.2.1 天然老熟林…………………………………..………………………….17 4.1.2.2 天然幼齡林……………………………………………………..……….17 4.1.2.3 人工幼齡林……………………………………………………..……….17 4.1.3 小結………………………………………...……………………………….18 4.2 全碳濃度……………………………………………………………………….19 4.2.1 季節性動態…………………………………………...…………………….19 4.2.1.1 天然老熟林……………………………………………..……………….19 4.2.1.2 天然幼齡林……………………………………………..……………….19 4.2.1.3 人工幼齡林……………………………………………..……………….19 4.2.2 葉齡動態………………………………………………………...………….20 4.2.2.1 天然老熟林……………………………………………………..……….20 4.2.2.2 天然幼齡林………………………………………………………..…….20 4.2.2.3 人工幼齡林……………………………………..……………………….20 4.2.3 小結…………………………………………………………………...…….20 4.3 可溶性醣類濃度……………………………………………………………….21 4.3.1 季節性動態…………………………………………………………………21 4.3.1.1 天然老熟林………………………………………………..…………….21 4.3.1.2 天然幼齡林………………………………………………………..…….21 4.3.1.3 人工幼齡林…………………………………………………………..….22 4.3.2 葉齡動態……………………………………...…………………………….23 4.3.2.1 天然老熟林………..…………………………………………………….23 4.3.2.2 天然幼齡林………………………………………..…………………….23 4.3.2.3 人工幼齡林……………………………………………………………...23 4.3.3 小結………………………………………………………...……………….23 4.4 澱粉濃度……………………………………………………………………….24 4.4.1 季節性動態…………………………………………...…………………….24 4.4.1.1 天然老熟林……………………………………………..……………….24 4.4.1.2 天然幼齡林…………………………………………………..………….24 4.4.1.3 人工幼齡林………………………..…………………………………….24 4.4.2 葉齡動態…………………………………………………………………....25 4.4.3 小結……………………………………………………………………...….26 4.5 TNC濃度……………………………………………………………………….27 4.5.1 季節性動態……………...………………………………………………….27 4.5.1.1 天然老熟林……………………………………………………………...27 4.5.1.2 天然幼齡林……………………………………………………………...27 4.5.1.3 人工幼齡林……………………………………………………………...27 4.5.2 葉齡動態……………………………………………………………………28 4.5.2.1 天然老熟林……………………………………………………………...28 4.5.2.2 天然幼齡林…………………………………………………………..….28 4.5.2.3 人工幼齡林……………………………………………………………...28 4.5.3 小結…………………………………………………………………………28 5. 討論……………………………………………………………………………….30 5.1. 季節性冠層養分動態…………………………..…………………………..…30 5.1.1 全氮濃度………………………………………………………...………….30 5.1.2 全碳濃度………………………………………………………………...….31 5.1.3 可溶性醣類濃度…………………………………………………………....31 5.1.4 澱粉濃度……………………………………………………………...…….32 5.1.5 TNC濃度………………………………………………………………...….32 5.2. 冠層位置對養分分布的影響…………………...…………………………….34 5.2.1 全氮濃度………………………………………………………...………….34 5.2.2 含碳化合物濃度………………………………………………………...….35 5.3. 葉齡對養分分布的影響…………………………..…………………………..35 5.3.1 全氮濃度………………………………………………………...………….35 5.3.2 含碳化合物濃度………………………………………………………...….36 5.4 其它因子對養分分布的影響………………………..………………………...36 6. 結論……………………………………………………………………………….38 7. 參考文獻………………………………………………………………………….39 8. 附錄……………………………………………………………………………….45 8.1季節性動態……………………………………………………………………. 45 8.1.1 全氮濃度………………………………………………………...………….45 8.1.2 全碳濃度………………………………………………………...………….47 8.1.3 可溶性醣類濃度…………………………………………………...……….48 8.1.4 澱粉濃度………………………………………………………...………….50 8.1.5 TNC濃度………………………………………………………………...….51 8.2 GAMs配適結果………………………………………………………….……. 53 8.2.1 全氮濃度………………………………………………………...………….53 8.2.2 全碳濃度………………………………………………………...………….54 8.2.3 可溶性醣類濃度……………………………………………………...…….56 8.2.4 澱粉濃度………………………………………………………...………….57 8.2.5 TNC濃度…………………………………………………………………....58 8.3 GAMs配適結果:季節動態圖…………………………………………….........59 8.3.1 全氮濃度………………………………………………………...………….58 8.3.2 全碳濃度………………………………………………………...………….62 8.3.3 可溶性醣類濃度………………………………………………………...….63 8.3.4 澱粉濃度………………………………………………………...………….65 8.3.5 TNC濃度………………………………………………………………...….66 8.4 GAMs配適結果:葉齡動態圖………………………………………………….68 8.4.1 全氮濃度………………………………………………………...………….68 8.4.2 全碳濃度………………………………………………………...………….69 8.4.3 可溶性醣類濃度……………………………………………………...…….70 8.4.4 TNC濃度………………………………………………………………...….71 8.5前置實驗:決定非結構性碳元素(total non-structural carbohydrate, TNC)之分析方法………………………………………………...………………………..73 8.5.1. 確定流程及其參考文獻…………………………………………………...73 8.5.2. 確定各項參數……………………………………………………………...74 8.5.2.1 anthrone reagent配製及反應條件……………………………………….74 8.5.2.2 計算公式………………………………………………………………...74 8.5.2.3 細磨樣本需求量………………………………………………………...74 8.5.2.3.1 可溶性醣類…………………………………………………………..75 8.5.2.3.1 澱粉…………………………………………………………………..75 8.5.2.4 可溶性醣類之萃取……………………………………………………...75 8.5.2.4.1 萃取次數……………………………………………………………..75 8.5.2.4.2 萃取後分離是否需要添加氯仿…………….……………………….76 8.5.2.4.2.1加入2 ml氯仿及1.5 ml二次蒸餾水……………………………...77 8.5.2.4.2.2加入3 ml二次蒸餾水……………………………………………..77 8.5.2.5 澱粉之萃取……………………………………………………………...78 8.5.2.5.1 過氯酸(perchloric acid)的濃度及用量……………………………...78 8.5.2.5.2 萃取條件……………………………………………………………..78 8.5.2.5.2.1 加入1.5 ml 30%過氯酸,萃取一次………………………………79 8.5.2.5.2.2 加入1.5 ml 30%過氯酸,置於60℃,一小時,萃取一次………...79 8.5.2.5.3 萃取次數……………………………………………………………..79 8.5.2.6 秤重後樣本穩定度……………………………………………………...81 8.5.2.6.1 可溶性醣類………………………………………………..…………81 8.5.2.6.2 澱粉………………………………………………………………..…81 8.5.2.7 萃取後樣液穩定度…………………………………………………...…82 8.5.2.7.1 可溶性醣類………………………………………………………..…82 8.5.2.7.2 澱粉…………………………………………………………………..82 8.5.2.7.3 可溶性醣類…………………………………………………..………83 8.5.2.7.4 澱粉…………………………………………………………………..83 8.5.3. 未使用酵素水解澱粉及測定葡萄糖濃度之原因………………………...84 8.5.3.1 背景值太高…………………………………………………………...…84 8.5.3.2 藥品昂貴、樣本眾多……………………………………………….……84 8.5.4. 參考文獻…………………………………………………………………...85 8.5.4.1 直接引用……………………………………………………………...…85 8.5.4.2 僅供參考……………………………………………………………...…86 表目錄 表1. 樣區基本資料…………………………………………………………………..7 表2. 經GAMs最佳配適後之全氮濃度簡表……………………………………….18 表3. 經GAMs最佳配適後之全碳濃度簡表……………………………………….22 表4. 經GAMs最佳配適後之可溶性醣類濃度簡表……………………………….25 表5. 經GAMs最佳配適後之澱粉濃度簡表……………………………………….26 表6. 經GAMs最佳配適後之TNC濃度簡表………………………………………29 附表1. GAMs最佳配適後天然老熟林冠層之全氮濃度…………………………..53 附表2. GAMs最佳配適後天然老熟林冠層之全碳濃度…………………………..53 附表3. GAMs最佳配適後天然老熟林冠層之可溶性醣類濃度………………..…54 附表4. GAMs最佳配適後天然老熟林冠層之澱粉濃度…………………………..54 附表5. GAMs最佳配適後天然老熟林冠層之TNC濃度……………………...…..55 附表6. GAMs最佳配適後天然幼齡林冠層之全氮濃度…………………………..55 附表7. GAMs最佳配適後天然幼齡林冠層之全碳濃度…………………………..56 附表8. GAMs最佳配適後天然幼齡林冠層之可溶性醣類濃度…………………..56 附表9. GAMs最佳配適後天然幼齡林冠層之澱粉濃度…………………………..57 附表10. GAMs最佳配適後天然幼齡林冠層之TNC濃度…………………….......57 附表11. GAMs最佳配適後人工幼齡林冠層之全氮濃度…………………………58 附表12. GAMs最佳配適後人工幼齡林冠層之全碳濃度…………………………58 附表13. GAMs最佳配適後人工幼齡林冠層之可溶性醣類濃度…………………59 附表14. GAMs最佳配適後人工幼齡林冠層之澱粉濃度…………………………59 附表15. GAMs最佳配適後人工幼齡林冠層之TNC濃度……………………...…60 圖目錄 圖1. 碳循環(Körner, 2003)………….………………………….…………………....5 圖2. 植體內碳元素概分示意圖……………………………………………………..5 圖3. 樣區地圖…………………..……………………………………………………8 圖4. 採樣期間溫度及雨量趨勢圖……………………………………………..…....8 圖5. 冠層區分示意圖………………………………………………………………10 圖6. 葉齡區分示意圖………………………………………………………………10 圖7. TNC萃取流程圖……………………………………………………….………12 附圖1. 天然老熟林冠層之全氮濃度動態…………………………………………45 附圖2. 天然幼齡林冠層之全氮濃度動態……………………………………..…..46 附圖3. 人工幼齡林冠層之全氮濃度動態……………………………………..…..46 附圖4. 天然老熟林冠層之全碳濃度動態……………………………………..…..47 附圖5. 天然幼齡林冠層之全碳濃度動態……………………………………..…..47 附圖6. 人工幼齡林冠層之全碳濃度動態……………………………………..…..48 附圖7. 天然老熟林冠層之可溶性醣類濃度動態……………………………..…..48 附圖8. 天然幼齡林冠層之可溶性醣類濃度動態……………………………..…..49 附圖9. 人工幼齡林冠層之可溶性醣類濃度動態……………………………..…..49 附圖10. 天然老熟林冠層之澱粉濃度動態………………………………………..50 附圖11. 天然幼齡林冠層之澱粉濃度動態………………………………………..50 附圖12. 人工幼齡林冠層之澱粉濃度動態………………………………………..51 附圖13. 天然老熟林冠層之TNC濃度動態………………………………...……..51 附圖14. 天然幼齡林冠層之TNC濃度動態………………………………...……..52 附圖15. 人工幼齡林冠層之TNC濃度動態………………………………...……..52 附圖16. GAMs最佳配適後天然老熟林冠層全氮濃度之季節動態……………....60 附圖17. GAMs最佳配適後天然幼齡林冠層全氮濃度之季節動態………………61 附圖18. GAMs最佳配適後人工幼齡林冠層全氮濃度之季節動態………………61 附圖19. GAMs最佳配適後天然老熟林冠層全碳濃度之季節動態……………....62 附圖20. GAMs最佳配適後天然幼齡林冠層全碳濃度之季節動態………………62 附圖21. GAMs最佳配適後人工幼齡林冠層全碳濃度之季節動態………………63 附圖22. GAMs最佳配適後天然老熟林冠層可溶性醣類濃度之季節動態………63 附圖23. GAMs最佳配適後天然幼齡林冠層可溶性醣類濃度之季節動態………64 附圖24. GAMs最佳配適後人工幼齡林冠層可溶性醣類濃度之季節動態……....64 附圖25. GAMs最佳配適後天然老熟林冠層澱粉濃度之季節動態………………65 附圖26. GAMs最佳配適後天然幼齡林冠層澱粉濃度之季節動態………………65 附圖27. GAMs最佳配適後人工幼齡林冠層澱粉濃度之季節動態………………66 附圖28. GAMs最佳配適後天然老熟林冠層TNC濃度之季節動態…………...…66 附圖29. GAMs最佳配適後天然幼齡林冠層TNC濃度之季節動態…………...…67 附圖30. GAMs最佳配適後人工幼齡林冠層TNC濃度之季節動態…………...…67 附圖31. GAMs最佳配適後天然老熟林冠層全氮濃度之葉齡動態………………68 附圖32. GAMs最佳配適後天然幼齡林冠層全氮濃度之葉齡動態……………....68 附圖33. GAMs最佳配適後人工幼齡林冠層全氮濃度之葉齡動態………………69 附圖34. GAMs最佳配適後天然老熟林冠層全碳濃度之葉齡動態………………69 附圖35. GAMs最佳配適後天然老熟林冠層可溶性醣類濃度之葉齡動態…………….70 附圖36. GAMs最佳配適後天然幼齡林冠層可溶性醣類濃度之葉齡動態. …………...70 附圖37. GAMs最佳配適後人工幼齡林冠層可溶性醣類濃度之葉齡動態…………….71 附圖38. GAMs最佳配適後天然老熟林冠層TNC濃度之葉齡動態…………….…..…71 附圖39. GAMs最佳配適後天然幼齡林冠層TNC濃度之葉齡動態. ………………..…72 附圖40. GAMs最佳配適後人工幼齡林冠層TNC濃度之葉齡動態.. ……………...…..72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葉齡 | zh_TW |
| dc.subject | 臺灣雲杉(Picea morrisonicola) | zh_TW |
| dc.subject | 全氮 | zh_TW |
| dc.subject | 全碳 | zh_TW |
| dc.subject | 非結構性碳水化合物(TNC) | zh_TW |
| dc.subject | 季節動態 | zh_TW |
| dc.subject | 冠層位置 | zh_TW |
| dc.subject | Taiwan spruce (Picea morrisonicola) | en |
| dc.subject | needle age | en |
| dc.subject | canopy position | en |
| dc.subject | seasonal trends | en |
| dc.subject | carbohydrate | en |
| dc.subject | total carbon | en |
| dc.subject | total nitrogen | en |
| dc.title | 臺灣雲杉葉部碳氮之分布與動態 | zh_TW |
| dc.title | Distribution and dynamics of foliar carbon and nitrogen of Taiwan Spruce (Picea morrisonicola) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邱志郁 | |
| dc.contributor.oralexamcommittee | 郭幸榮,鹿兒陽,林世宗 | |
| dc.subject.keyword | 臺灣雲杉(Picea morrisonicola),全氮,全碳,非結構性碳水化合物(TNC),季節動態,冠層位置,葉齡, | zh_TW |
| dc.subject.keyword | Taiwan spruce (Picea morrisonicola),total nitrogen,total carbon,carbohydrate,seasonal trends,canopy position,needle age, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-09-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
