請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48749完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝 | |
| dc.contributor.author | Yueh-Hsiu Wu | en |
| dc.contributor.author | 吳岳修 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:11:54Z | - |
| dc.date.available | 2013-10-04 | |
| dc.date.copyright | 2010-10-04 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-09-27 | |
| dc.identifier.citation | References
[1] Hahn FM (1982) Hyperthermia and cancer. Plenum Press, New York [2] Dermietzel R, Streffer C (1992) The cytoskeleton and proliferation of melanoma cells under hypertermal conditions. A correlative double immune-labelling study. Strahlenther Onkol 168: 593-602 [3] Konings AWT(1987) Effects of heat and radiation on mammalian cells. Radiat Phys Chem 30:339-349 [4] Breipohl W, van Beuningen D, Ummels M, Streffer C, Schonfelder B (1983) Effect of hyperthermia on the intestinal mucosa of mice. Verh Anat Ges 77:567-569 [5] Moroz P, Jones S.K, Gray B.N (2002) Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperthermia 18:267-284. [6] Moliton A (2007) Basic electromagnetism and materials. Springer, New York [7] Sellmyer D, Skomski R (2006) Advanced Magnetic Nanostructures. Springer, New York [8] Andra W (1998) Magnetism in Medicine. Berlin: Wiley–VCH [9] Mornet S, Vasseur S, Grasset F, and Duguet E (2004). Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161-2175 [10] Néel L (1947) Propriétés d'un ferromagnétique cubique en grains fins. Comptes rendus 224:1488-1490 [11] Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370-374 [12] Fannin PC and Charles SW (1989) The study of a ferrofluid exhibiting both Brownian and Néel relaxation.J. Phys. D: Appl. Phys 22:187–191 [13] Wang D, He J, Rosenzweig N, and Rosenzweig Z (2004) Superparamagnetic Fe2O3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation. Nano Lett 4:409-413 [14] Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, and Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102-109 [15] Neuberger T, Schopf B, Hofmann H, Hofmann M, and von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483-96 [16] Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, and Cheon J (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387-12391 [17] Hsiao JK, Yang CY, Wang YH, Lu CW, Uttam BP, Liu HM, and Wang JL (2008) Magnetic nanoparticle labeling of cultured cancer cell line without transfection agent. Biomedical Engineering: Appl Basis Comm 20:277-285 [18] Jordan A, Scholz R, Wust P, Fähling H, and Felix R (1999) Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413-419 [19] Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, and Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol 78:7-14 [20] Drake P, Cho HJ, Shih PS, Kao CH, Lee KF, Kuo CH, Lin XZ and Lin YJ (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17:4914-4918 [21] Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, and Pollert E (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magn Magn Mater 302:315-320 [22] Bae S, Lee SW and Takemura Y (2006) Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl Phys Lett 89:252503 [23] Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3(1):66-73 [24] Lu Y, Yin YD, Mayers BT, Xia YN (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183-186 [25] Wang TW, Wu HC, Wang WR, Lin FH, Lou PJ, Shieh MJ, and Young TH (2007) The development of magnetic degradable DP-Bioglass for hyperthermia cancer therapy. J Biomed Mater Res A 83A:828-837 [26] Wu HC, Wang TW, Sun JS, Wang WH, and Lin FH (2007) A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 16:165601 [27] Sun BQ, Yi GS, Chen DP, Zhou YX, and Cheng J (2002) Synthesis and characterization of strongly fluorescent europium-doped calcium sulfide nanoparticles. J Mater Chem 12:1194-1198 [28] Kumar V, Kumar R, Lochab SP, and Singh N (2006) Thermoluminescence studies of CaS-Bi nanocrystalline phosphors. J Phys D Appl Phys 24:5137-5142 [29] Singh V, Rao TKG, Zhu JJ, and Tiwari M (2006) Luminescence and defect studies of Ce3+ doped CaS phosphor synthesized via solid state diffusion method. Mat Sci Eng B-Solid 131:195-199 [30] Gong X, Chen WJ, Wu PF, Chan WK (1998) Photoluminescence and upconversion optical properties of the CaS : Sm3+ nanocrystallites. Appl Phys Lett 73:2875-2877 [31] Wang C, Tang K, Yang Q and Qian Y (2003) Preparation and Photoluminescence of CaS:Bi, CaS:Ag, CaS:Pb, and Sr[sub 1-x]Ca[sub x]S Nanocrystallites. J Electrochem Soc 150:G163-G166 [32] Guo C, Chu B and Su Q (2004) Improving the stability of alkaline earth sulfide-based phosphors. Appl Surf Sci 225:198-203 [33] Hu Y, Zhuang W, Ye HQ, Zhang SS, Fang Y, and Huang XW (2005) Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED. J Lumin 111:139-145 [34] Phamthi M (1995) Rare-earth calcium sulfide phosphors for cathode-ray tube displays. J Alloy Compd 225:547-551 [35] Kasano H, Megumi K and Yamamoto H (1984) Cathodoluminescence of Ca[sub 1-x]Mg[sub x]S:A (A = Eu or Ce). J Electrochem Soc 131:1953-1960 [36] Phamthi M and Ravaux G (1991) Calcium Sulfide Phosphors Prepared by the Flux Method .1. Growth-Parameters and Luminescent Efficiency. J Electrochem Soc 138:1103-1106 [37] Wang CR, Tang KB, Yang Q, An CH, Hai B, Shen GZ, and Qian YT (2002) Blue-light emission of nanocrystalline CaS and SrS synthesized via a solvothermal route. Chem Phys Lett 351:385-390 [38] Sawada N, Chen Y and Isobe T (2006) Low-temperature synthesis and photoluminescence of IIA-VIB nano-phosphors doped with rare earth ions. J Alloy Compd 408:824-827 [39] Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM and Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–233 [40] Berry CC, Wells S, Charles S and Curtis ASG (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551-4557 [41] Xu XL, Friedman G, Humfeld KD, Majetich SA and Asher SA (2002) Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem Mater 14:1249-1256 [42] Kim BS, Qiu JM, Wang JP and Taton TA (2005) Magnetomicelles: Composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett 5:1987-1991 [43] Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, Deger S, Wust P, Loening SA and Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperthermia 21:637-647 [44] Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A and Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7-14 [45] Tseng HY, Lee GB, Lee CY, Shih YH and Lin XZ (2009) Localised heating of tumours utilizing injectable magnetic nanoparticles for hyperthermia cancer therapy. IET Nanobiotechnol 3:46-54 [46] Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC and Lin FH (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30:3956-3960 [47] Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knízek K, Marysko M, Kaspar P, Klementová M, Grünwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G and Duguet E (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology 20:275610 [48] Graf C, Dembski S, Hofmann A and Rühl E (2006) A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 22:5604-5610 [49] Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL and Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316-327 [50] Mykhaylyk O, Antequera YS, Vlaskou D and Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2(10):2391-2411 [51] Fortin JP, Gazeau F and Wilhelm C (2008) Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J Biophy 37:223-228 [52] Stöber W, Fink A and Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62-69 [53] Carlsson G, Gullberg B, and Hafstrom L (1983) Estimation of liver tumor volume using different formulas – An experimental study in rats. J Cancer Res Clin Oncol 105:20-23 [54] Cullity BD (1978) Elements of x-ray diffraction, 2d edn. Reading, Massachusetts, Addison-Wesley Pub Co, pp 102 [55] Wu SYH, Tseng CL and Lin FH (2010) A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia. J Nanopart Res 12:1173-1185 [56] Wu SJ, Md. Uddin A, Nagamine S and Sasaoka E (2004) Role of water vapor in oxidative decomposition of calcium sulfide. Fuel 83:671-677 [57] Marban G, Garcia-Calzada M and Fuertes AB (1999) Kinetics of oxidation of CaS particles in the regime of low SO2 release. Chem Eng Sci 54:77-90 [58] Carter CB and Norton MG (2007) Ceramic materials: science and engineering. Springer , New York, pp 183 [59] Brusentsov NA, Gogosov VV, Brusentsova TN, Sergeev AV, Jurchenko NY, Kuznetsov AA, Kuznetsov OA, and Shumakov LI (2001) Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J Magn Magn Mater 225:113-117 [60] Jordan A, Rheinländer T, Waldöfner N, and Scholz R (2003) Increase of the Specific Absorption Rate (SAR) by Magnetic Fractionation of Magnetic Fluids. J Nanopart Res 5:597-600 [61] Carinci F, Piattelli A, Stabellini G, Palmieri A, Scapoli L, Laino G, Caputi S, and Pezzetti F (2004) Calcium sulfate: Analysis of MG63 osteoblast-like cell response by means of a microarray technology. J Biomed Mater Res B 71B:260-267 [62] Palmieri A, Pezzetti F, Brunelli G, Scapoli L, Lo Muzio L, Scarano A, Martinelli M, and Carinci F (2008) Calcium sulfate acts on the miRNA of MG63E osteoblast-like cells. J Biomed Mater Res B 84B:369-374 [63] Graf C, Vossen DLJ, Imhof A and van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693-6700 [64] Pattanaik M and Bhaumik SK (2000) Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces. Mater Lett 44:352-360 [65] Raming TP, Winnubst AJA, van Kats CM and Philipse AP (2002) The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles. J Colloid Interf Sci 249:346-350 [66] He R, You XG, Shao J, Gao F, Pan BF and Cui DX (2007) Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 18:315601 [67] Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH and Lee JK (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed Engl 44:1068-10717 [68] Cheng Dand and Xu QH (2007) Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chem Commun 3:248–250 [69] Ren CL, Li JH, Chen XG, Hu ZD and Xue DS (2007) Preparation and properties of a new multifunctional material composed of superparamagnetic core and rhodamine B doped silica shell. Nanotechnology 18:345604 [70] Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC and Hsiao JK (2008) Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4:218-224 [71] Prasad NK, Rathinasamy K, Panda D and Bahadur D (2007) Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2-xO3 synthesized by a single step process. J Mater Chem 17:5042-5051 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48749 | - |
| dc.description.abstract | 本研究為利用摻鐵硫化鈣磁性奈米粒子作為癌症熱治療之研究。此奈米粒子具有良好之磁性,生物可分解性,以及生物相容性。實驗利用共沉法以及在氮氣中經過熱處理來和成摻鐵硫化鈣奈米粒子。此磁性粒子晶體結構經由X光繞射分析與硫化鈣類似。經由Debye-Scherrer方程式計算以及由穿透式電子顯微鏡可得知奈米粒子大小約40奈米。
由SQUID測得CaS為反磁性,一旦鐵離子摻入其磁性將轉成順磁性。當加熱至600oC 將轉換為鐵磁性。在磁場作用下具有足夠的能力使溫度在6分鐘內上升至42.5oC。尤其是在800oC加熱1小時,因為晶格中有更多的鐵離子取代鈣離子,其磁滯曲線面積將隨著加熱溫度的上升而增加。產生的熱能也隨著熱處理溫度的增加而上升。在37oC以及磁場條件 (f = 750 KHz, H = 10 Oe) 時,SAR值為45.47 W/g,經由LDH分析體外生物相容性證明對於3T3纖維母細胞並沒有細胞毒性。而在體外細胞熱療的結果也顯示摻鐵硫化鈣納米粒子能夠產生足夠的熱量,進而消滅CT - 26腫瘤細胞。 此外將進一步利用PVP高分子接合劑以及二氧化矽高分子對摻鐵硫化鈣磁性奈米粒子進行表面改質。改質後的磁性粒子鐵濃度11.6 wt%,其晶體結構也與CaS類似,平均粒徑約47.5nm並可以均勻得分散在水溶液中。經由紅外光譜分析可測得二氧化矽主要吸收峰。在37 °C時,磁性粒子濃度 10 mg/ml的條件下,SAR值為37.92 W/g。在磁場作用下具有足夠的能力使溫度在15分鐘內上升至45oC。細胞毒性測試也顯示了良好的生物相容性結果,表示此奈米粒子不影響細胞活力。 表面改質之摻鐵硫化鈣奈米粒子在體外細胞熱治療結果顯示在外加磁場下, 能夠使腫瘤細胞之細胞毒性上升60%, 明顯比未加磁性粒子或是未加磁場之控制組高。另外在小鼠動物實驗中,在Balb/c小鼠的皮下注入奈米粒子以及暴露在外加磁場下,經由15天的治療期後,腫瘤體積明顯出現減少趨勢。因此本研究新開發的摻鐵硫化鈣以及改質後的磁性奈米粒子是一種相當具有開發潛力的材料,期望在未來可以更深入的應用在癌症熱治療之研究。 | zh_TW |
| dc.description.abstract | In this study, a magnetic iron-doped calcium sulfide (Fe-CaS) nanoparticle was newly developed and studied for the purpose of hyperthermia due to its promising magnetic property, adequate biodegradation rate and relatively good biocompatibility. Fe-CaS nanoparticles were synthesized by a wet chemical co-precipitation process with heat treatment in an N2 atmosphere, and were subsequently cooled in N2 and exposured to air at a low temperature. The crystal structure of the Fe-CaS nanoparticles was similar to that of the CaS, which was identified by an X-ray diffractometer (XRD). The particle size was less than 40 nm based on a Debye-Scherrer equation and transmission electron microscope (TEM) examination.
Magnetic properties obtained from the SQUID magnetometer demonstrated that the synthesized CaS was a diamagnetic property. Once the Fe ions were doped, the synthesized Fe-CaS converted into paramagnetism which showed no hysteresis loop. Having been heated above 600oC in N2, the Fe-CaS showed a promising magnetic property to produce enough energy to increase the temperature for hyperthermia. 10 mg/ml of the Fe-CaS was able to generate heat to elevate the media temperature over 42.5oC within 6 minutes. The area of the hysteresis loop increased with the increasing of the treated temperature, especially at 800oC for 1 hour. This is because more Fe ions replaced Ca ions in the lattice at the higher heat treatment temperature. The heat production was also increasing with the increasing of heat treatment temperature, which resulted in an adequate specific absorption ratio (SAR) value, which was found to be 45.47 W/g at 37oC under an alternative magnetic field of f = 750 KHz, H = 10 Oe. The in vitro biocompatibility test of the synthesized Fe-CaS nanoparticles examined by the LDH assay showed no cytotoxicity to 3T3 fibroblast. The result of in vitro cell hyperthermia shows that under magnetic field the Fe-CaS nanoparticles were able to generate heat and kill the CT-26 cancer cells significantly. Furthermore, the sulfide-based magnetic Fe-doped CaS nanoparticles modified with a silica layer were then investigated. A polyvinyl pyrrolidone polymer was used as the coupling agent. The developed nanoparticles contained 11.6 wt% iron concentration, and their x-ray diffraction pattern was similar to those of CaS and Fe-CaS nanoparticles. The average particle size was approximately 47.5 nm and homogeneously dispersed in aqueous solutions. The major absorption bands of silica were observed from the FTIR spectrum. The magnetic properties and heating efficiency were also examined. The specific absorption ratio of nanoparticles at a concentration of 10 mg/ml at 37°C in an ethanol carrier fluid was 37.92 W/g and the nanoparticles would raise the temperature to over 45°C within 15 min. A cytotoxicity analysis revealed that the nanoparticles had good biocompatibility, which indicated that the nanoparticles did not affect cell viability. The therapeutic effects of the nanoparticles were investigated using in-vitro and animal studies. Cells seeded with nanoparticles and treated under an AC magnetic field revealed a percentage of cytotoxicity (60%) that was significantly higher from that in other groups. In the animal study, during a hyperthermia period of 15 days, tumor-bearing Balb/c mice that were subcutaneously injected with nanoparticles and exposed to an AC magnetic field manifested a reduction in tumor volume. The newly developed Fe-CaS nanoparticles and silica-modified Fe-CaS nanoparticles can thus be considered a promising and attractive hyperthermia thermoseed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:11:54Z (GMT). No. of bitstreams: 1 ntu-99-D93548013-1.pdf: 6367411 bytes, checksum: c366e857bce85a39fd99637b2d200674 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 Ⅰ Chinese abstract Ⅱ English abstract IV List of figures IX List of tables XII Chapter 1 Introduction 1 1.1 Hyperthermia 1 1.2 Magnetic fluid hyperthermia 2 1.3 The magnetisms of the magnetic materials 3 1.4 The heating mechanisms of the magnetic nanoparticles 6 1.5 Magnetic nanoparticles 9 1.6 Calcium Sulfide nanoparticles 11 Chapter 2 Theoretical Basis 13 2.1 Advantages of surface modifications 13 2.2 Surface modification of magnetic nanoparticles 14 2.3 Silica polymerization 15 2.4 Determination of the iron concentration 17 2.5 Calculation of SAR value 19 2.6 The Purpose of study 20 Chapter 3 Materials and Methods 21 3.1 Materials preparations 21 3.1.1 Preparation of CaS nanoparticles 22 3.1.2 Preparation of Fe-CaS nanoparticles 23 3.1.3 Preparation of Fe-CaS-SiO2 nanoparticles 24 3.1.4 Preparation of Fe-CaS-SiO2-FITC nanoparticles 25 3.2 Materials Characterizations 26 3.2.1 X-Ray Diffraction 26 3.2.2 Transmission Electron Microscope 26 3.2.3 Superconducting Quantum Interference Device 26 3.2.4 FTIR analysis 27 3.2.5 Measurement of Iron concentration 27 3.2.6 Heat profiles 27 3.2.7 Material Mediated Cytotoxicity 28 3.3 Hyperthermia treatment 29 3.3.1 In-vitro cell hyperthermia 29 3.3.2 In-vivo cell hyperthermia 30 3.4 Statistical Analysis 31 Chapter 4 Results 32 4.1 Evaluations of CaS and Fe-CaS nanoparticles 32 4.1.1 Material properties 32 4.1.2 Biocompatibility 41 4.1.3 In-vitro hyperthermia 43 4.2 Evaluations of Fe-CaS-SiO2 nanoparticles 45 4.2.1 Material properties 45 4.2.2 Biocompatibility 52 4.2.2 In-vitro hyperthermia 54 4.2.2 In-vivo hyperthermia 55 Chapter 5 Discussions 61 5.1 Discussion of Fe-CaS nanoparticles 61 5.2 Discussion of Fe-CaS-SiO2 nanoparticles 69 Chapter 6 Conclusion 76 References 78 Curriculum Vitae 86 Acknowledgement 89 LIST OF FIGURES Chapter 1 1 Figure 1-1 Mass susceptibility curves 3 Figure 1-2 Coercivity as a function of particle size 4 Figure 1-3 Magnetic domains and their (a) random orientation; (b) organization 5 under an external field Figure 1-4 Hysteresis loop 6 Figure 1-5 (a) Néel relaxation of magnetization in a magnetic particle; (b) Brown 8 rotation of a magnetic particle Figure 1-6 SEM image of calcium sulfide 11 Chapter 2 13 Figure 2-1 The chemical structure of PVP 15 Figure 2-2 The chemical structure of TEOS 16 Figure 2-3 The sol-gel process of silica polymerization 16 Figure 2-4 The ferrous ion forms complex with 1,10-phenanthroline 17 Figure 2-5 The standard curve for iron concentration measurement 18 Chapter 3 21 Figure 3-1 The reduction of tetrazolium salt 28 Figure 3-2 The heating system for clinical hyperthermia treatment 31 Chapter 4 32 Figure 4-1 Fe-CaS nanoparticles were attracted by a magnet 32 Figure 4-2 XRD patterns of (a) commercial CaS (b) synthesized CaS 34 (c) Fe-CaS without heat treatment Figure 4-3 XRD patterns of (a) Fe-CaS with heat treated in air (b) Fe-CaS-800oC 34 Figure 4-4 Height image (left) and 3-D image (right) of Fe-CaS nanoparticles 35 Figure 4-5 TEM images of Fe-CaS-800oC nanoparticles and the ED patterns 36 Figure 4-6 M-H curves of CaS and Fe-CaS without heat treatment 39 Figure 4-7 The M-H curves of Fe-CaS-800oC 39 Figure 4-8 Heat profile of Fe-CaS-800oC at 1, 2, 5, and 10 mg/ml 40 Figure 4-9 Cytotoxicity analysis of Fe-CaS-800oC at (a) day 1 and (b) day 3 42 Figure 4-10 LDH assay of 3T3 (a) and CT-26 cells (b) treated with 44 Fe-CaS-800oC at concentration of 2.5 mg/ml Figure 4-11 XRD patterns of (a) Fe-CaS and (b) Fe-CaS-SiO2 nanoparticles 45 Figure 4-12 FTIR spectrum of Fe-CaS-SiO2 nanoparticles 46 Figure 4-13 TEM images of (a) silica and (b) Fe-CaS-SiO2 nanoparticles 48 Figure 4-14 SEM image of Fe-CaS-SiO2 nanoparticles and EDS pattern 49 Figure 4-15 M-H curves of (a) Fe-CaS and (b) Fe-CaS-SiO2 nanoparticles 50 Figure 4-16 Heat profiles of Fe-CaS-SiO2 nanoparticles at 5 and 10 mg/ml 51 Figure 4-17 Spectra of (a) Fe-CaS-SiO2-FITC and (b) Fe-CaS-SiO2 nanoparticles 52 Figure 4-18 Confocal images of NIH-3T3 cells treated with Fe-CaS-SiO2-FITC 53 Figure 4-19 Cytotoxicity analysis by LDH assay at (a) day 1 and (b) day 3 55 Figure 4-20 LDH assay of CT-26 cells treated with Fe-CaS-SiO2 nanoparticles 56 Figure 4-21 Temperature change of (a) tumor area and (b) mice rectum 58 Figure 4-22 Tumor size variations of the control and experiment groups 59 Figure 4-23 Photographs of the tumor size of the (a) Fe-CaS-SiO2 60 nanoparticles induced group and the (b) control group Chapter 5 61 Figure 5-1 M-H curves of Fe-CaS treated in low temperatures 65 Figure 5-2 M-H curves of Fe-CaS treated in high temperatures 66 Figure 5-3 Resonance structure of PVP polymer 70 Figure 5-4 Linkage between PVP polymer and TEOS 70 Figure 5-5 Formation of FITC-APS complex 73 LIST OF TABLES Chapter 3 21 Table 1 Chemical compounds and their providers 21 Chapter 4 32 Table 2 Characteristics of Fe-CaS nanoparticles 37 Chapter 5 61 Table 3 Parameters of heat treatment (1) 65 Table 4 Parameters of heat treatment (2) 66 | |
| dc.language.iso | en | |
| dc.subject | 硫化鈣 | zh_TW |
| dc.subject | 奈米生醫 | zh_TW |
| dc.subject | 磁性奈米粒子 | zh_TW |
| dc.subject | 熱治療 | zh_TW |
| dc.subject | 摻鐵 | zh_TW |
| dc.subject | Hyperthermia | en |
| dc.subject | Calcium Sulfide | en |
| dc.subject | Magnetic nanoparticles | en |
| dc.subject | Nanomedicine | en |
| dc.subject | Iron-doped | en |
| dc.title | 摻鐵硫化鈣磁性奈米粒子應用於癌症熱治療之研究 | zh_TW |
| dc.title | Iron-doped Calcium Sulfide Magnetic Nanoparticles as Thermoseeds for Hyperthermia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳克紹,廖俊仁,董國忠,郭宗甫 | |
| dc.subject.keyword | 熱治療,摻鐵,硫化鈣,磁性奈米粒子,奈米生醫, | zh_TW |
| dc.subject.keyword | Hyperthermia,Iron-doped,Calcium Sulfide,Nanomedicine,Magnetic nanoparticles, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-09-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
