請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48747完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | |
| dc.contributor.author | Chun-Kai Chiang | en |
| dc.contributor.author | 蔣竣凱 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:11:47Z | - |
| dc.date.available | 2013-09-30 | |
| dc.date.copyright | 2010-09-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-09-28 | |
| dc.identifier.citation | 1. Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture. Spine (Phila Pa 1976) 1997;22:25S-31S.
2. Belkoff SM, Maroney M, Fenton DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 1999;25:23S-6S. 3. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine (Phila Pa 1976) 2000;25:1061-4. 4. Belkoff SM, Mathis JM, Jasper LE. Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. AJNR Am J Neuroradiol 2002;23:1647-51. 5. Belkoff SM, Mathis JM, Jasper LE, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine (Phila Pa 1976) 2001;26:1542-6. 6. Berlemann U, Ferguson SJ, Nolte LP, et al. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 2002;84:748-52. 7. Wilke HJ, Mehnert U, Claes LE, et al. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine 2006;31:2934-41. 8. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. Ajnr: American Journal of Neuroradiology 2006;27:217-23. 9. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 2003;226:119-24. 10. Kayanja MM, Schlenk R, Togawa D, et al. The biomechanics of 1, 2, and 3 levels of vertebral augmentation with polymethylmethacrylate in multilevel spinal segments. Spine (Phila Pa 1976) 2006;31:769-74. 11. Steens J, Verdonschot N, Aalsma AM, et al. The influence of endplate-to-endplate cement augmentation on vertebral strength and stiffness in vertebroplasty. Spine (Phila Pa 1976) 2007;32:E419-22. 12. Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine (Phila Pa 1976) 2001;26:151-6. 13. Cappozzo A. Compressive loads in the lumbar vertebral column during normal level walking. J Orthop Res 1984;1:292-301. 14. Ren H, Shen Y, Zhang YZ, et al. Correlative Factor Analysis on the Complications Resulting From Cement Leakage After Percutaneous Kyphoplasty in the Treatment of Osteoporotic Vertebral Compression Fracture. J Spinal Disord Tech 2010. 15. Schmidt R, Cakir B, Mattes T, et al. Cement leakage during vertebroplasty: an underestimated problem? Eur Spine J 2005;14:466-73. 16. Teo J, Wang SC, Teoh SH. Preliminary study on biomechanics of vertebroplasty: a computational fluid dynamics and solid mechanics combined approach. Spine (Phila Pa 1976) 2007;32:1320-8. 17. Baroud G, Falk R, Crookshank M, et al. Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration. J Biomech 2004;37:189-96. 18. Loeffel M, Ferguson SJ, Nolte LP, et al. Vertebroplasty: experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate. Spine (Phila Pa 1976) 2008;33:1352-9. 19. Baroud G, Vant C, Giannitsios D, et al. Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty. Spine (Phila Pa 1976) 2005;30:68-74. 20. Glaser DL, Kaplan FS. Osteoporosis. Definition and clinical presentation. Spine (Phila Pa 1976) 1997;22:12S-6S. 21. Magerl F, Aebi M, Gertzbein SD, et al. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994;3:184-201. 22. Baur A, Stabler A, Arbogast S, et al. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002;225:730-5. 23. Linn J, Birkenmaier C, Hoffmann RT, et al. The intravertebral cleft in acute osteoporotic fractures: fluid in magnetic resonance imaging-vacuum in computed tomography? Spine (Phila Pa 1976) 2009;34:E88-93. 24. Kim DY, Lee SH, Jang JS, et al. Intravertebral vacuum phenomenon in osteoporotic compression fracture: report of 67 cases with quantitative evaluation of intravertebral instability. J Neurosurg 2004;100:24-31. 25. Hide IG, Gangi A. Percutaneous vertebroplasty: history, technique and current perspectives. Clin Radiol 2004;59:461-7. 26. Peh WC, Gilula LA. Percutaneous vertebroplasty: indications, contraindications, and technique. Br J Radiol 2003;76:69-75. 27. Rollinghoff M, Zarghooni K, Schluter-Brust K, et al. Indications and contraindications for vertebroplasty and kyphoplasty. Arch Orthop Trauma Surg 2010;130:765-74. 28. Jasper LE, Deramond H, Mathis JM, et al. The effect of monomer-to-powder ratio on the material properties of cranioplastic. Bone 1999;25:27S-9S. 29. Tanigawa N, Komemushi A, Kariya S, et al. Relationship between cement distribution pattern and new compression fracture after percutaneous vertebroplasty. AJR Am J Roentgenol 2007;189:W348-52. 30. McGraw JK, Heatwole EV, Strnad BT, et al. Predictive value of intraosseous venography before percutaneous vertebroplasty. Journal of Vascular & Interventional Radiology 2002;13:149-53. 31. McGraw JK, Strnad BT, Patzik SB, et al. Carbon dioxide and gadopentetate dimeglumine venography to guide percutaneous vertebroplasty. Cardiovascular & Interventional Radiology 2000;23:485-7. 32. Peh WC, Gilula LA. Additional value of a modified method of intraosseous venography during percutaneous vertebroplasty. AJR. American Journal of Roentgenology 2003;180:87-91. 33. Vasconcelos C, Gailloud P, Beauchamp NJ, et al. Is percutaneous vertebroplasty without pretreatment venography safe? Evaluation of 205 consecutives procedures. Ajnr: American Journal of Neuroradiology 2002;23:913-7. 34. Komemushi A, Tanigawa N, Kariya S, et al. Intraosseous venography with carbon dioxide in percutaneous vertebroplasty: carbon dioxide retention in renal veins. Cardiovascular & Interventional Radiology 2008;31:1174-7. 35. Tanigawa N, Komemushi A, Kariya S, et al. Intraosseous venography with carbon dioxide contrast agent in percutaneous vertebroplasty. AJR. American Journal of Roentgenology 2005;184:567-70. 36. Gangi A, Sabharwal T, Irani FG, et al. Quality assurance guidelines for percutaneous vertebroplasty. Cardiovasc Intervent Radiol 2006;29:173-8. 37. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976) 2001;26:1511-5. 38. Voormolen MH, Lohle PN, Juttmann JR, et al. The risk of new osteoporotic vertebral compression fractures in the year after percutaneous vertebroplasty. Journal of Vascular & Interventional Radiology 2006;17:71-6. 39. Ledlie JT, Renfro MB. Kyphoplasty treatment of vertebral fractures: 2-year outcomes show sustained benefits. Spine (Phila Pa 1976) 2006;31:57-64. 40. Baroud G, Heini P, Nemes J, et al. Biomechanical explanation of adjacent fractures following vertebroplasty. Radiology 2003;229:606-7; author reply 7-8. 41. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Ajnr: American Journal of Neuroradiology 1997;18:1897-904. 42. Cortet B, Cotten A, Boutry N, et al. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. J Rheumatol 1999;26:2222-8. 43. Laredo JD, Hamze B. Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol 2004;33:493-505. 44. Chen YJ, Tan TS, Chen WH, et al. Intradural cement leakage: a devastatingly rare complication of vertebroplasty. Spine (Phila Pa 1976) 2006;31:E379-82. 45. Harrington KD. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate : a case report. J Bone Joint Surg Am 2001;83-A:1070-3. 46. Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Ajnr: American Journal of Neuroradiology 2004;25:175-80. 47. Yoo KY, Jeong SW, Yoon W, et al. Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethylmethacrylate. Spine (Phila Pa 1976) 2004;29:E294-7. 48. Baumann C, Fuchs H, Kiwit J, et al. Complications in percutaneous vertebroplasty associated with puncture or cement leakage. Cardiovasc Intervent Radiol 2007;30:161-8. 49. Sasani M, Ozer AF, Kaner T, et al. Delayed L2 vertebrae split fracture following kyphoplasty. Pain Pract 2009;9:141-4. 50. Wagner AL, Baskurt E. Refracture with cement extrusion following percutaneous vertebroplasty of a large interbody cleft. AJNR Am J Neuroradiol 2006;27:230-1. 51. Wenger M, Stahli DM, Roth BE, et al. Endplate resorption following manual fracture reduction and vertebroplasty in the lumbar spine. Acta Neurochir (Wien) 2008;150:1313-4. 52. Yang SC, Chen WJ, Yu SW, et al. Revision strategies for complications and failure of vertebroplasties. Eur Spine J 2008;17:982-8. 53. Heo DH, Chin DK, Yoon YS, et al. Recollapse of previous vertebral compression fracture after percutaneous vertebroplasty. Osteoporos Int 2009;20:473-80. 54. Hochegger M, Radl R, Leithner A, et al. Spinal canal stenosis after vertebroplasty. Clin Radiol 2005;60:397-400. 55. Lin WC, Lee YC, Lee CH, et al. Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J 2008;17:592-9. 56. Graham J, Ahn C, Hai N, et al. Effect of bone density on vertebral strength and stiffness after percutaneous vertebroplasty. Spine (Phila Pa 1976) 2007;32:E505-11. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48747 | - |
| dc.description.abstract | 經皮椎骨整型術為一種治療因骨質疏鬆症引起的椎骨壓迫性骨折之手術方法。手術目的為使用骨水泥補強椎骨骨折之處,可增進椎骨之穩定度並回復其強度。椎骨整形術雖能有效治療病患疼痛,但相關之併發症的發生仍會對患者造成不便。主要併發症為骨水泥溢流、鄰近節椎骨骨折與椎骨再骨折。併發症的發生不僅影響患者的日常生活,對併發症的治療也會對醫療資源造成負擔。本論文之研究目的為探討椎骨整型手術之併發症的發生機制,並提出有效的預防方法,以增進椎骨整型手術用於治療壓迫性椎骨骨折之長期效益。
本論文之鄰近節椎骨發生新骨折之研究中,發現新骨折發生的原因可能為強度較弱的骨質與前彎動作。使脊椎維持正常的姿態和減少過重之負載可能為椎骨發生鄰近節椎骨骨折的最佳策略。本論文之預防性椎骨整型術之研究中,顯示具骨質疏鬆症的椎骨若其位置在身體前彎力矩的支點之處,預防性地灌注骨水泥,可避免身體的重心向前位移,並防止鄰近節椎骨產生新骨折。本論文之骨水泥溢流發生機制研究中,建議術前使用斷層掃瞄檢測椎骨型態,分析椎骨表面細微之裂縫與椎體靜脈尺寸。手術過程中若能避免使骨水泥接觸椎骨裂縫與椎體靜脈位置,就可以有效地降低骨水泥發生溢流的機會。本論文之椎骨發生再骨折之研究中,發現海綿骨不均勻的變形可能是造成椎骨發生再骨折的原因。新形手術策略若能使椎骨在受疲勞負載下,內部與椎骨後側有均勻的變形,可以避免椎骨在接受骨水泥治療後發生再骨折。 本論文以豬隻與人體椎骨進行體外實驗,並以生物力學之觀點,對椎骨整型術之主要併發症做一完整的系統分析。本論文的研究成果可提供醫事人員在手術施行策略上參考準則,以降低併發症發生的機會。期許本論文之研究成果能提升椎骨整型手術之長期效益,並使患者有更好的康復情形。 | zh_TW |
| dc.description.abstract | Percutaneous vertebroplasty is one of surgical treatments for osteoporotic vertebral compressive fracture. During the surgery, bone cement is injected into the fractured vertebrae to recover its stability and strength. Although patients are quickly relieved of pain, the complications of vertebroplasty, including cement leakage and vertebral failure at the adjacent and the augmented level, could be devastating. The treatments for complications may increase medical expenditure. The objectives of this study are to investigate the mechanisms of vertebroplasty complications and to propose potential prevention strategies to improve the long term benefits of vertebroplasty.
In the study of adjacent vertebral failure, we found the weak vertebra and flexion compression are the two risk factors for of adjacent vertebral failure. The results of this research suggest that; restoring the natural lordotic posture and reducing the magnitude of external loading seem to be the best strategies to prevent adjacent vertebral failure for an already weak vertebra. In the study of prophylactic vertebroplasty, it can be cautiously suggested that if the vertebra is osteoporotic and adjacent level is located at pivot of spinal column, the prophylactic augmentation may be an option to avoid anterior body shift effect and prevent the adjacent vertebral failure. In the study of bone cement leakage, we suggest that the integrity of vertebral structure should be examined before the operation of vertebroplasty. If surgeon could avoid bone cement infiltrating to the cortical defect and basivertebral vein, the risk of cement leakage could be minimized. In the study of augmented vertebral refracture, we found the failure mechanism of augmented vertebrae is the presence of fracture lines, which are induced by the uneven strain distribution within the vertebrae. Technique or strategy equalizing the strain distribution within the vertebrae and spinal column seems to be important in preventing the post surgery fracture. In this study, the biomechanical mechanism of vertebroplasty complications were systematically investigated using porcine and human cadaveric vertebrae. The strategies for complication reduction are suggested to increase the long term surgery efficacy on compression fracture recovery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:11:47Z (GMT). No. of bitstreams: 1 ntu-99-F92548007-1.pdf: 3602831 bytes, checksum: a345004619fb26a20772f12a5dcaa97a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 第一章 緒論 1
1.1 研究背景與動機 1 1.2 研究目的與範圍 2 1.3 椎骨骨折 3 1.3.1脊椎組成 3 1.3.2 椎骨骨質疏鬆症 4 1.3.3椎骨骨折型態 5 1.4 經皮椎骨整型術 6 1.4.1手術步驟 7 1.4.2手術適應症 9 1.5 經皮椎骨整型術之併發症 10 1.5.1鄰近節椎骨骨折 10 1.5.2骨水泥溢流 12 1.5.3椎骨再骨折 13 1.6 論文章節架構 15 1.7 致謝 15 1.8 參考文獻 16 第二章 鄰近節椎骨發生新骨折之機制 19 2.1 前言 19 2.2 材料與方法 20 2.2.1試樣準備 20 2.2.2實驗儀器 20 2.2.3實驗流程 21 2.2.4 SED數據分析 22 2.2.5椎骨內累積能 23 2.2.6 統計分析 24 2.3 實驗結果 24 2.4 討論 33 2.5 實驗限制 34 2.6 參考文獻 35 第三章 預防性椎骨整型術應用於防止鄰近節椎骨骨折之發生 37 3.1 前言 37 3.2 材料與方法 38 3.2.1人體試樣之準備與處理 38 3.2.2衝擊測試之儀器與流程 39 3.2.3疲勞測試之儀器與流程 41 3.2.4實驗測試程序 41 3.2.5 資料分析 42 3.3實驗結果 42 3.4 討論 47 3.5 實驗限制 50 3.6 參考文獻 51 第四章 骨水泥溢流分析 53 4.1 前言 53 4.2 材料與方法 54 4.2.1 人體試樣準備 54 4.2.2 椎骨壓迫性骨折 54 4.2.3 自動注射儀器 55 4.2.4 骨水泥配置 56 4.2.5 電腦斷層掃瞄影像 56 4.2.6 椎骨切片 57 4.2.7 實驗流程 57 4.3 實驗結果 58 4.4 討論 64 4.5參考文獻 67 第五章 椎骨整型術因疲勞負載發生再骨折之機制 70 5.1 前言 70 5.2 材料與方法 71 5.2.1 試樣準備 71 5.2.2 壓迫性骨折 71 5.2.3骨水泥灌注 72 5.2.4 疲勞負載 72 5.2.5 椎骨、神經腔與椎間孔之變形 74 5.2.6 骨小樑之微型態切片 74 5.3 結果 75 5.4 討論 79 5.5 實驗限制 81 5.6 參考文獻 82 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鄰近節椎骨骨折 | zh_TW |
| dc.subject | 椎骨再骨折 | zh_TW |
| dc.subject | 生物力學 | zh_TW |
| dc.subject | 椎骨整形術 | zh_TW |
| dc.subject | 骨水泥溢流 | zh_TW |
| dc.subject | Vertebroplasty | en |
| dc.subject | Vertebral Refracture | en |
| dc.subject | Cement Leakage | en |
| dc.subject | Adjacent Vertebral Failure | en |
| dc.subject | Biomechanics | en |
| dc.title | 椎骨整形術之生物力學研究 | zh_TW |
| dc.title | Biomechanics Study of Vertebroplasty | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 朱銘祥,趙振綱,廖漢文,鄭誠功,陳文哲,楊曙華 | |
| dc.subject.keyword | 椎骨整形術,生物力學,鄰近節椎骨骨折,骨水泥溢流,椎骨再骨折, | zh_TW |
| dc.subject.keyword | Vertebroplasty,Biomechanics,Adjacent Vertebral Failure,Cement Leakage,Vertebral Refracture, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-09-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
