請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48745
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張智芬(Zee-Fen Chang) | |
dc.contributor.author | Yen-Ling Chen | en |
dc.contributor.author | 陳彥鴒 | zh_TW |
dc.date.accessioned | 2021-06-15T07:11:40Z | - |
dc.date.available | 2011-03-03 | |
dc.date.copyright | 2011-03-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-10-05 | |
dc.identifier.citation | 1. Carreras, C. W., and Santi, D. V. (1995) Annu Rev Biochem 64, 721-762
2. Jordan, A., and Reichard, P. (1998) Annu Rev Biochem 67, 71-98 3. Reichard, P. (1988) Annu. Rev. Biochem. 57, 349-374 4. Bianchi, V., and Spychala, J. (2003) J Biol Chem 278, 46195-46198 5. Brown, N. S., and Bicknell, R. (1998) Biochem J 334 ( Pt 1), 1-8 6. Mathews, C. K. (2006) FASEB J 20, 1300-1314 7. Skoog, K. L., Bjursell, K. G., and Nordenskjold, B. A. (1974) Adv Enzyme Regul 12, 345-354 8. Walters, R. A., Tobey, R. A., and Ratliff, R. L. (1973) Biochim Biophys Acta 319, 336-347 9. Spyrou, G., and Reichard, P. (1988) Mutat Res 200, 37-43 10. Coppock, D. L., and Pardee, A. B. (1987) Mol Cell Biol 7, 2925-2932 11. DeGregori, J., Kowalik, T., and Nevins, J. R. (1995) Mol Cell Biol 15, 4215-4224 12. Huang, S. H., Tang, A., Drisco, B., Zhang, S. Q., Seeger, R., Li, C., and Jong, A. (1994) DNA Cell Biol 13, 461-471 13. Liang, P., Averboukh, L., Zhu, W., Haley, T., and Pardee, A. B. (1995) Cell Growth Differ 6, 1333-1338 14. Sherley, J. L., and Kelly, T. J. (1988) J Biol Chem 263, 8350-8358 15. Ke, P. Y., and Chang, Z. F. (2004) Mol. Cell. Biol. 24, 514-526 16. Ke, P. Y., Kuo, Y. Y., Hu, C. M., and Chang, Z. F. (2005) Genes Dev. 19, 1920-1933 17. Reichard, P., Eliasson, R., Ingemarson, R., and Thelander, L. (2000) J Biol Chem 275, 33021-33026 18. Chimploy, K., and Mathews, C. K. (2001) J Biol Chem 276, 7093-7100 19. Weber, G. (1983) Cancer Res 43, 3466-3492 20. Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003) Nat Rev Cancer 3, 330-338 21. Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993) Cell 74, 957-967 22. Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) J Clin Invest 104, 263-269 23. Longley, D. B., Boyer, J., Allen, W. L., Latif, T., Ferguson, P. R., Maxwell, P. J., McDermott, U., Lynch, M., Harkin, D. P., and Johnston, P. G. (2002) Cancer Res 62, 2644-2649 24. Goulian, M., Bleile, B., and Tseng, B. Y. (1980) J Biol Chem 255, 10630-10637 25. Kunz, B. A., Kohalmi, S. E., Kunkel, T. A., Mathews, C. K., McIntosh, E. M., and Reidy, J. A. (1994) Mutat Res 318, 1-64 26. Kunkel, T. A., and Alexander, P. S. (1986) J Biol Chem 261, 160-166 27. Goodman, M. F., and Fygenson, K. D. (1998) Genetics 148, 1475-1482 28. Phear, G., and Meuth, M. (1989) Mutat Res 214, 201-206 29. Song, S., Wheeler, L. J., and Mathews, C. K. (2003) J Biol Chem 278, 43893-43896 30. Bradshaw, H. D., Jr., and Deininger, P. L. (1984) Mol Cell Biol 4, 2316-2320 31. Johansson, M., and Karlsson, A. (1997) J. Biol. Chem. 272, 8454-8458 32. Wang, L., and Eriksson, S. (2000) Biochem. J. 351 Pt 2, 469-476 33. Pontarin, G., Gallinaro, L., Ferraro, P., Reichard, P., and Bianchi, V. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 12159-12164 34. Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001) Nat Genet 29, 342-344 35. Bello, L. J. (1974) Exp Cell Res 89, 263-274 36. Chang, Z. F., Huang, D. Y., and Lai, T. C. (1995) J Biol Chem 270, 27374-27379 37. Munch-Petersen, B., Tyrsted, G., and Cloos, L. (1993) J Biol Chem 268, 15621-15625 38. Munch-Petersen, B., Cloos, L., Jensen, H. K., and Tyrsted, G. (1995) Adv Enzyme Regul 35, 69-89 39. Sakamoto, S., Iwama, T., Tsukada, K., Utsunomiya, J., Kawasaki, T., and Okamoto, R. (1984) Carcinogenesis 5, 183-185 40. Sakamoto, S., Iwama, T., Ebuchi, M., Tsukada, K., Sagara, T., Kawasaki, T., Murakami, S., Kasahara, N., Kudo, H., and Okamoto, R. (1986) Br J Surg 73, 272-273 41. Sasvari-Szekely, M., Staub, M., Guttmann, A., Torcsvari, V., and Antoni, F. (1985) Acta Biochim Biophys Acad Sci Hung 20, 163-172 42. Munch-Petersen, B., and Tyrsted, G. (1977) Biochim Biophys Acta 478, 364-375 43. Chang, Z. F., Huang, D. Y., and Hu, S. F. (1999) J. Cell. Biochem. 75, 300-309 44. Roehl, H. H., and Conrad, S. E. (1990) Mol Cell Biol 10, 3834-3837 45. Kim, Y. K., and Lee, A. S. (1991) Mol Cell Biol 11, 2296-2302 46. Stuart, P., Ito, M., Stewart, C., and Conrad, S. E. (1985) Mol Cell Biol 5, 1490-1497 47. Chang, Z. F. (1990) Biochem Biophys Res Commun 169, 780-787 48. Lieberman, H. B., Lin, P. F., Yeh, D. B., and Ruddle, F. H. (1988) Mol Cell Biol 8, 5280-5291 49. Chou, W. L., and Chang, Z. F. (2001) Biochim Biophys Acta 1519, 209-215 50. Ito, M., and Conrad, S. E. (1990) J Biol Chem 265, 6954-6960 51. Chang, Z. F., Huang, D. Y., and Chi, L. M. (1998) J Biol Chem 273, 12095-12100 52. Chang, Z. F., Huang, D. Y., and Hsue, N. C. (1994) J. Biol. Chem. 269, 21249-21254 53. Li, C. L., Lu, C. Y., Ke, P. Y., and Chang, Z. F. (2004) Biochem Biophys Res Commun 313, 587-593 54. Gronowitz, J. S., Hagberg, H., Kallander, C. F., and Simonsson, B. (1983) Br J Cancer 47, 487-495 55. O'Neill, K. L., Abram, W. P., and McKenna, P. G. (1986) Ir J Med Sci 155, 272-274 56. Gronowitz, J. S., Bergstrom, R., Nou, E., Pahlman, S., Brodin, O., Nilsson, S., and Kallander, C. F. (1990) Cancer 66, 722-732 57. Zhang, J., Jia, Q., Zou, S., Zhang, P., Zhang, X., Skog, S., Luo, P., Zhang, W., and He, Q. (2006) Oncol Rep 15, 455-461 58. O'Neill, K. L., Buckwalter, M. R., and Murray, B. K. (2001) Expert Rev Mol Diagn 1, 428-433 59. Broet, P., Romain, S., Daver, A., Ricolleau, G., Quillien, V., Rallet, A., Asselain, B., Martin, P. M., and Spyratos, F. (2001) J Clin Oncol 19, 2778-2787 60. Foekens, J. A., Romain, S., Look, M. P., Martin, P. M., and Klijn, J. G. (2001) Cancer Res 61, 1421-1425 61. He, Q., Fornander, T., Johansson, H., Johansson, U., Hu, G. Z., Rutqvist, L. E., and Skog, S. (2006) Anticancer Res 26, 4753-4759 62. Zhang, F., Li, H., Pendleton, A. R., Robison, J. G., Monson, K. O., Murray, B. K., and O'Neill, K. L. (2001) Cancer Detect Prev 25, 8-15 63. Furman, P. A., Fyfe, J. A., St Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., Lehrman, S. N., Bolognesi, D. P., Broder, S., Mitsuya, H., and et al. (1986) Proc Natl Acad Sci U S A 83, 8333-8337 64. Eriksson, S., Munch-Petersen, B., Johansson, K., and Eklund, H. (2002) Cell Mol Life Sci 59, 1327-1346 65. al-Nabulsi, I., Takamiya, Y., Voloshin, Y., Dritschilo, A., Martuza, R. L., and Jorgensen, T. J. (1994) Cancer Res. 54, 5614-5617 66. Wakazono, Y., Kubota, M., Furusho, K., Liu, L., and Gerson, S. L. (1996) Mutat. Res. 362, 119-125 67. McKenna, P. G., and Hickey, I. (1981) Cell Biol. Int. Rep. 5, 555-561 68. McKenna, P. G., McKelvey, V. J., and Frew, T. L. (1988) Mutat. Res. 200, 231-242 69. McKenna, P. G., Yasseen, A. A., and McKelvey, V. J. (1985) Somat. Cell Mol. Genet. 11, 239-246 70. Weinberg, G., Ullman, B., and Martin, D. W., Jr. (1981) Proc Natl Acad Sci U S A 78, 2447-2451 71. Gibert, I., Calero, S., and Barbe, J. (1990) Mol Gen Genet 220, 400-408 72. Elledge, S. J., Zhou, Z., Allen, J. B., and Navas, T. A. (1993) Bioessays 15, 333-339 73. Elledge, S. J., Zhou, Z., and Allen, J. B. (1992) Trends Biochem Sci 17, 119-123 74. Zhou, Z., and Elledge, S. J. (1992) Genetics 131, 851-866 75. Elledge, S. J., and Davis, R. W. (1990) Genes Dev 4, 740-751 76. Elledge, S. J., and Davis, R. W. (1989) Mol Cell Biol 9, 4932-4940 77. Elledge, S. J., and Davis, R. W. (1987) Mol Cell Biol 7, 2783-2793 78. Yagle, K., and McEntee, K. (1990) Mol Cell Biol 10, 5553-5557 79. Hurd, H. K., Roberts, C. W., and Roberts, J. W. (1987) Mol Cell Biol 7, 3673-3677 80. Huang, M., and Elledge, S. J. (1997) Mol Cell Biol 17, 6105-6113 81. Wang, P. J., Chabes, A., Casagrande, R., Tian, X. C., Thelander, L., and Huffaker, T. C. (1997) Mol Cell Biol 17, 6114-6121 82. Chabes, A., Domkin, V., Larsson, G., Liu, A., Graslund, A., Wijmenga, S., and Thelander, L. (2000) Proc Natl Acad Sci U S A 97, 2474-2479 83. Huang, M., Zhou, Z., and Elledge, S. J. (1998) Cell 94, 595-605 84. Zhao, X., and Rothstein, R. (2002) Proc Natl Acad Sci U S A 99, 3746-3751 85. Zhao, X., Chabes, A., Domkin, V., Thelander, L., and Rothstein, R. (2001) EMBO J 20, 3544-3553 86. Yao, R., Zhang, Z., An, X., Bucci, B., Perlstein, D. L., Stubbe, J., and Huang, M. (2003) Proc Natl Acad Sci U S A 100, 6628-6633 87. Lee, Y. D., Wang, J., Stubbe, J., and Elledge, S. J. (2008) Mol Cell 32, 70-80 88. Chabes, A., Georgieva, B., Domkin, V., Zhao, X., Rothstein, R., and Thelander, L. (2003) Cell 112, 391-401 89. Eckstein, H., Ahnefeld, S., and Albietz-Loges, K. (1974) Z Naturforsch C 29, 272-282 90. Engstrom, Y., Eriksson, S., Jildevik, I., Skog, S., Thelander, L., and Tribukait, B. (1985) J Biol Chem 260, 9114-9116 91. Bjorklund, S., Skog, S., Tribukait, B., and Thelander, L. (1990) Biochemistry 29, 5452-5458 92. Chabes, A., and Thelander, L. (2000) J Biol Chem 275, 17747-17753 93. Chabes, A. L., Pfleger, C. M., Kirschner, M. W., and Thelander, L. (2003) Proc Natl Acad Sci U S A 100, 3925-3929 94. Kuo, M. L., Hwang, H. S., Sosnay, P. R., Kunugi, K. A., and Kinsella, T. J. (2003) Cancer J 9, 277-285 95. Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y., and Nakamura, Y. (2000) Nature 404, 42-49 96. Nakano, K., Balint, E., Ashcroft, M., and Vousden, K. H. (2000) Oncogene 19, 4283-4289 97. Guittet, O., Hakansson, P., Voevodskaya, N., Fridd, S., Graslund, A., Arakawa, H., Nakamura, Y., and Thelander, L. (2001) J Biol Chem 276, 40647-40651 98. Yamaguchi, T., Matsuda, K., Sagiya, Y., Iwadate, M., Fujino, M. A., Nakamura, Y., and Arakawa, H. (2001) Cancer Res. 61, 8256-8262 99. Hurta, R. A., and Wright, J. A. (1992) J Biol Chem 267, 7066-7071 100. Filatov, D., Bjorklund, S., Johansson, E., and Thelander, L. (1996) J Biol Chem 271, 23698-23704 101. Kuo, M. L., and Kinsella, T. J. (1998) Cancer Res 58, 2245-2252 102. Lin, Z. P., Belcourt, M. F., Cory, J. G., and Sartorelli, A. C. (2004) J. Biol. Chem. 279, 27030-27038 103. Lin, Z. P., Belcourt, M. F., Carbone, R., Eaton, J. S., Penketh, P. G., Shadel, G. S., Cory, J. G., and Sartorelli, A. C. (2007) Biochem Pharmacol 73, 760-772 104. Zhang, Y. W., Jones, T. L., Martin, S. E., Caplen, N. J., and Pommier, Y. (2009) J Biol Chem 284, 18085-18095 105. Klisovic, R. B., Blum, W., Wei, X., Liu, S., Liu, Z., Xie, Z., Vukosavljevic, T., Kefauver, C., Huynh, L., Pang, J., Zwiebel, J. A., Devine, S., Byrd, J. C., Grever, M. R., Chan, K., and Marcucci, G. (2008) Clin Cancer Res 14, 3889-3895 106. Heidel, J. D., Liu, J. Y., Yen, Y., Zhou, B., Heale, B. S., Rossi, J. J., Bartlett, D. W., and Davis, M. E. (2007) Clin Cancer Res 13, 2207-2215 107. Hoeijmakers, J. H. (2001) Nature 411, 366-374 108. d'Adda di Fagagna, F., Teo, S. H., and Jackson, S. P. (2004) Genes Dev 18, 1781-1799 109. Lavin, M. F. (2004) DNA Repair (Amst) 3, 1515-1520 110. Shiotani, B., and Zou, L. (2009) Mol Cell 33, 547-558 111. Lobrich, M., and Jeggo, P. A. (2007) Nat Rev Cancer 7, 861-869 112. Ohnishi, T., Mori, E., and Takahashi, A. (2009) Mutat Res 669, 8-12 113. Misteli, T., and Soutoglou, E. (2009) Nat Rev Mol Cell Biol 10, 243-254 114. Bolderson, E., Richard, D. J., Zhou, B. B., and Khanna, K. K. (2009) Clin Cancer Res 15, 6314-6320 115. Calonge, T. M., and O'Connell, M. J. (2008) DNA Repair (Amst) 7, 136-140 116. Bartek, J., and Lukas, J. (2007) Curr Opin Cell Biol 19, 238-245 117. Clemenson, C., and Marsolier-Kergoat, M. C. (2009) DNA Repair (Amst) 8, 1101-1109 118. Lindqvist, A., Rodriguez-Bravo, V., and Medema, R. H. (2009) J Cell Biol 185, 193-202 119. Pardo, B., Gomez-Gonzalez, B., and Aguilera, A. (2009) Cell Mol Life Sci 66, 1039-1056 120. Delacote, F., and Lopez, B. S. (2008) Cell Cycle 7, 33-38 121. Shrivastav, M., De Haro, L. P., and Nickoloff, J. A. (2008) Cell Res 18, 134-147 122. O'Driscoll, M., and Jeggo, P. A. (2006) Nat Rev Genet 7, 45-54 123. Deweese, J. E., and Osheroff, N. (2009) Nucleic Acids Res 37, 738-748 124. Nitiss, J. L. (2009) Nat Rev Cancer 9, 338-350 125. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R. A. (2008) Nat Rev Cancer 8, 193-204 126. Palumbo, A., Gay, F., Bringhen, S., Falcone, A., Pescosta, N., Callea, V., Caravita, T., Morabito, F., Magarotto, V., Ruggeri, M., Avonto, I., Musto, P., Cascavilla, N., Bruno, B., and Boccadoro, M. (2008) Ann Oncol 19, 1160-1165 127. Lieu, C., Chow, L., Pierson, A. S., Eckhardt, S. G., O'Bryant, C. L., Morrow, M., Tran, Z. V., Wright, J. J., and Gore, L. (2009) Invest New Drugs 27, 53-62 128. Willmore, E., de Caux, S., Sunter, N. J., Tilby, M. J., Jackson, G. H., Austin, C. A., and Durkacz, B. W. (2004) Blood 103, 4659-4665 129. Arner, E. S., and Eriksson, S. (1995) Pharmacol. Ther. 67, 155-186 130. Navalgund, L. G., Rossana, C., Muench, A. J., and Johnson, L. F. (1980) J. Biol. Chem. 255, 7386-7390 131. Harper, J. W., and Elledge, S. J. (2007) Mol. Cell 28, 739-745 132. Jackson, S. P., and Bartek, J. (2009) Nature 461, 1071-1078 133. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., and Jacks, T. (1994) Science 266, 807-810 134. Nordlund, P., and Reichard, P. (2006) Annu Rev Biochem 75, 681-706 135. Boothman, D. A., Davis, T. W., and Sahijdak, W. M. (1994) Int. J. Radiat. Oncol. Biol. Phys. 30, 391-398 136. Hu, C. M., and Chang, Z. F. (2008) Cancer Res. 68, 2831-2840 137. Gasparri, F., Wang, N., Skog, S., Galvani, A., and Eriksson, S. (2009) Eur. J. Cell Biol. 88, 779-785 138. Cory, A. H., Owen, T. C., Barltrop, J. A., and Cory, J. G. (1991) Cancer Commun 3, 207-212 139. Sherman, P. A., and Fyfe, J. A. (1989) Anal. Biochem. 180, 222-226 140. Sarkaria, J. N., Busby, E. C., Tibbetts, R. S., Roos, P., Taya, Y., Karnitz, L. M., and Abraham, R. T. (1999) Cancer Res. 59, 4375-4382 141. van Vugt, M. A., Bras, A., and Medema, R. H. (2004) Mol. Cell 15, 799-811 142. Mamely, I., van Vugt, M. A., Smits, V. A., Semple, J. I., Lemmens, B., Perrakis, A., Medema, R. H., and Freire, R. (2006) Curr. Biol. 16, 1950-1955 143. Siu, W. Y., Lau, A., Arooz, T., Chow, J. P., Ho, H. T., and Poon, R. Y. (2004) Mol Cancer Ther 3, 621-632 144. Ho, C. C., Siu, W. Y., Chow, J. P., Lau, A., Arooz, T., Tong, H. Y., Ng, I. O., and Poon, R. Y. (2005) Exp Cell Res 304, 1-15 145. Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. (1993) Nature 366, 701-704 146. Espinosa, J. M., and Emerson, B. M. (2001) Mol. Cell 8, 57-69 147. Liu, X., Zhou, B., Xue, L., Shih, J., Tye, K., Qi, C., and Yen, Y. (2005) Biochem Pharmacol 70, 1288-1297 148. Prem veer Reddy, G., and Pardee, A. B. (1980) Proc Natl Acad Sci U S A 77, 3312-3316 149. veer Reddy, G. P., and Pardee, A. B. (1983) Nature 304, 86-88 150. Noguchi, H., Prem veer Reddy, G., and Pardee, A. B. (1983) Cell 32, 443-451 151. Plucinski, T. M., Fager, R. S., and Reddy, G. P. (1990) Mol Pharmacol 38, 114-120 152. Pontarin, G., Fijolek, A., Pizzo, P., Ferraro, P., Rampazzo, C., Pozzan, T., Thelander, L., Reichard, P. A., and Bianchi, V. (2008) Proc Natl Acad Sci U S A 105, 17801-17806 153. Engstrom, Y., Rozell, B., Hansson, H. A., Stemme, S., and Thelander, L. (1984) EMBO J 3, 863-867 154. Engstrom, Y., and Rozell, B. (1988) EMBO J 7, 1615-1620 155. Brockenbrough, J. S., Morihara, J. K., Hawes, S. E., Stern, J. E., Rasey, J. S., Wiens, L. W., Feng, Q., and Vesselle, H. (2009) J. Histochem. Cytochem. 57, 1087-1097 156. Imamoto, N. (2000) Cell Struct Funct 25, 207-216 157. Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003) Nat. Rev. Cancer 3, 330-338 158. Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) J. Clin. Investig. 104, 263-269 159. Longley, D. B., Boyer, J., Allen, W. L., Latif, T., Ferguson, P. R., Maxwell, P. J., McDermott, U., Lynch, M., Harkin, D. P., and Johnston, P. G. (2002) Cancer Res. 62, 2644-2649 160. Goulian, M., Bleile, B., and Tseng, B. Y. (1980) J. Biol. Chem. 255, 10630-10637 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48745 | - |
dc.description.abstract | 在DNA複製以及修復時,提供胸苷三磷酸 (dTTP) 用於DNA合成是非常重要的過程。細胞內主要有兩條路徑可以提供dTTP 的合成,分別是新生成和回收路徑。而過去的文獻指出DNA損傷可藉由腫瘤抑制蛋白p53或非p53依賴的訊息傳導,進一步正向調控核苷酸還原酶 (RNR) 所主導的dTTP新生成路徑。此過程可以提供足夠的dTTP供DNA修復使用,而使得細胞有更好的存活率。然而,目前對於dTTP的回收路徑是否亦參與於DNA損傷反應中仍不是非常的清楚。
胸腺嘧啶激酶 (TK)是dTTP回收路徑中的速率決定酵素。由於RNR中的小亞基 (R2) 與細胞質中TK1在細胞週期中受到相似的調控,舉凡在DNA合成時期 (S phase)的轉錄活化以及離開有絲分裂時期的蛋白質降解,因而我提出兩個問題: TK1是否像小亞基 (R2) 會參與DNA 損傷反應,此外腫瘤抑制蛋白p53是否會於DNA損傷時影響dTTP 回收路徑。而在我的研究中發現經過基因毒殺藥劑處理的癌症細胞會誘導TK1表現量上升並且於細胞核中累積。而後也發現p53缺失的細胞於DNA損傷復原的過程中,TK1表現量的累積是導因於細胞透過活化G2檢查哨將其停滯於G2時期,因而缺乏有絲分裂時期的蛋白質降解機制。另外我也發現p53正常的大腸直腸癌細胞在DNA損傷時會透過細胞週期蛋白依賴性激酶抑制劑p21去抑制G1/S時期的進程,導致較少量的細胞停滯於G2時期和較少的TK1累積。因此在DNA發生損傷時,癌症細胞中p53的狀態可透過不同的細胞週期調控而影響TK1誘導的程度。除此之外,我亦發現在p53缺失的大腸直腸癌細胞中,TK1對於細胞的增殖是非必要的但是在DNA損傷復原時dTTP 的補給上卻是重要的。進一步探討於DNA損傷時,經正向調節的TK1主導的dTTP 其功能上的重要性,我證明在DNA損傷復原時抑制TK1表現量會降低DNA修復的效率並導致更多因基因毒性藥劑引起的死亡。總而言之,我的實驗結果暗示在基因毒性藥劑的處裡後,癌症細胞會正向調節TK1而產生較多的dTTP,有助於停滯在G2時期DNA的修復工程。 總結,我的論文研究透過整合DNA 損傷訊息、腫瘤抑制蛋白p53調節路徑、dTTP生成以及TK1的細胞週期調控歸納出負責調節dTTP合成的TK1在化學治療反應中的功能性角色。 | zh_TW |
dc.description.abstract | Cellular supply of dTTP is essential for DNA synthesis in the DNA replication and repair processes. dTTP biosynthesis is controlled by de novo and salvage pathway. Previous reports have already demonstrated that ribonucleotide reductase (RNR) -mediated de novo pathway for dTTP synthesis is up-regulated by DNA damage signaling in a p53-dependent and p53-independent manner, which contributes to sufficient dTTP supply for DNA repair, thus leading to better survival. However, it is poorly understood whether the regulation of salvage pathway for dTTP synthesis is involved in the DNA damage response.
Thymidine kinase (TK) is a rate-limiting enzyme in salvage pathway-mediated dTTP biosyntheis. Since R2 subunits of RNR complex and cytosolic TK1 share similar regulatory modes in terms of S phase-specific transcriptional activation and proteasome-mediated proteolytic control in late mitosis, I raised questions whether TK1, like R2 subunit, participates in DNA damage response and whether p53 affects the salvage pathway-mediated dTTP synthesis following DNA damage. I found that genotoxic insults in tumor cells caused up-regulation and nuclear localization of TK1. Further I discovered that TK1 accumulated in p53-deficient cells during recovery from DNA damage is due to a lack of mitotic proteolysis since these cells are arrested in the G2 phase by checkpoint activation. In addition, I observed that p21 expression in response to DNA damage prohibits G1/S progression, resulting in a smaller G2 fraction and less TK1 accumulation in HCT116 p53-proficient cells. Thus, the p53 status of tumor cells affects the magnitude of TK1 induction after DNA damage through differential cell cycle control. Furthermore, the experimental data were shown that in HCT-116 p53-deficient cells, TK1 is dispensable for cell proliferation, but crucial for dTTP supply during recovery from DNA damage. To further investigate the functional importance of up-regulated TK1-mediated dTTP synthesis in DNA damage response, I found that depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and causes more genotoxic insult-induced lethality. Altogether, experimental data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G2 arrest. In sum, my thesis integrates DNA damage signaling, p53-mediated pathway, dTTP synthesis and cell cycle control of TK1 to define the functional role of TK1 in dTTP regulation in chemotherapeutic response. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:11:40Z (GMT). No. of bitstreams: 1 ntu-99-F94442003-1.pdf: 2607902 bytes, checksum: 79fdc947d39ded795b26af66a5e084e2 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書…………………………………………………………………………i
謝誌……………………………………………………………………………………...ii 中文摘要………………………………………………………………………………..iii Abstract………………………………………………………………………………....iv Table of contents………………………………………………………………………....v Chapter I - Overview and Rationale……………………………………………………..1 Part I - The metabolism of dTTP synthesis…………………………………………….2 Part II - Thymidine kinase 1 (TK1) in dTTP synthesis………………………………...5 Part III - Production of dNTP in DNA repair…………………………………………..8 Part IV - Double-strand breaks (DSBs) - induced DNA damage response…………...12 Rationale………………………………………………………………………………16 Chapter II – The Regulation and Functional Contribution of Thymidine Kinase 1 in Repair of DNA damage………………………………………………………………...17 Introduction…………………………………………………………………………...18 Material and Methods…………………………………………………………………20 Results………………………………………………………………………...............23 Discussions…………………………………………………………………………....28 Perspective…………………………………………………………………………… 32 List of Figures…………………………………………………………………………33 Supplemental Figures…………………………………………………………………49 References……………………………………………………………………………...54 Vita……………………………………………………………………………………..61 Appendix……………………………………………………………………………….62 | |
dc.language.iso | en | |
dc.title | 胸腺嘧啶激酶1參與DNA損傷修復之探討 | zh_TW |
dc.title | Involvement of Thymidine Kinase 1 in DNA repair | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 張明富(Ming-Fu Chang) | |
dc.contributor.oralexamcommittee | 李財坤(Tsai-Kun Li),羅?升(Wan-Sheng Lo),謝小燕(Sheau-Yann Shieh) | |
dc.subject.keyword | 胸腺嘧啶激酶,1,DNA修復,檢查哨,細胞週期, | zh_TW |
dc.subject.keyword | TK1,DNA Repair,Checkpoint,cell cycle, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-10-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。