Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉太平
dc.contributor.authorHung-Wen Kuoen
dc.contributor.author郭鴻文zh_TW
dc.date.accessioned2021-06-15T07:10:52Z-
dc.date.available2011-10-22
dc.date.copyright2010-10-22
dc.date.issued2010
dc.date.submitted2010-10-13
dc.identifier.citation[1] C. Cercignani, R. Illner and M. Pulvirenti, “The mathematical theory of dilute gases,” Applied Mathematical Sciences, 106. Springer, New York, 1994.
[2] Eugene P. Gross and E. Atlee. Jackson, Kinetic theory of the impulsive motion of an infinite plane, Phys. Fluids, 1 (1958), 318–328.
[3] Hsun-Tiao Yang and Lester. Lees, Rayleigh’s problem at low Mach number according to the kinetic theory of gases, J. Math. and Phys, 35 (1956), 192–235.
[4] Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem, Phys. Fluids, 7 (1964), 470–471.
[5] Y. Sone, “Kinetic theory and fluid dynamics,” Modeling and Simulation in Science, Engineering and Technology, Birkh¨auser Boston, Inc., Boston, MA, 2002.
[6] Y. Sone, “Molecular gas dynamics. Theory, techniques, and applications.” Modeling and Simulation in Science, Engineering and Technology, Birkh¨auser Boston, Inc., Boston, MA, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48731-
dc.description.abstractIn this thesis, we investigate the initial layer for Rayleigh problem of an infinite flat plate set into uniform motion impulsively in its own plane.
Rayleigh considered that the fluid is viscous and incompressible and that its motion is governed by the Navier-Stokes equation with the non-slip boundary condition.
However, Y.Sone [4] found that the Navier-Stokes equation is not inadequate for the description of the gas shortly after the plane has been set into motion. He investigated the short time behavior of Rayleigh flow with the linearized BKW model equation and obtained the approximation of the flow velocity.
We study Rayleigh problem by using the linearized BKW model, the linearized Boltzmann equation and the full Boltzmann equation, respectively. The purpose is to study the gas motion under the diffuse reflection boundary condition. For a small impulsive velocity (small Mach number) and short time, the flow behaves like a free molecule flow. Our analysis is based on certain pointwise estimates for the solution of the problem and flow velocity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:10:52Z (GMT). No. of bitstreams: 1
ntu-99-D94221001-1.pdf: 485318 bytes, checksum: 1c000e5c6581c6f9bd4827c886918f07 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝i
摘要ii
Abstract iii
Contents iv
1 Introduction 1
2 Preliminaries 10
3 Free Transport Equation 15
4 Linearized BKW equation 17
4.1 Integral form of flow velocity . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Existence of solution and pointwise estimate on flow velocity . . . . . 18
4.3 Approximation of flow velocity . . . . . . . . . . . . . . . . . . . . . . 24
5 Linearized Boltzmann equation 35
5.1 Integral form of solution and the existence of solution . . . . . . . . . 35
5.2 Pointwise estimate on flow velocity . . . . . . . . . . . . . . . . . . . 38
6 Full Boltzmann equation 41
6.1 Integral form of solution and the existence of solution . . . . . . . . . 41
6.2 Pointwise estimate on mass flux . . . . . . . . . . . . . . . . . . . . . 50
7 Appendix 55
7.1 Nondimensional Boltzmann equation . . . . . . . . . . . . . . . . . . 55
7.2 Uniqueness of solution of the linearized Boltzmann equation . . . . . 56
Bibliography 59
dc.language.isoen
dc.subject波茲曼方程zh_TW
dc.subject波茲曼-克魯克-偉蘭德方程zh_TW
dc.subject初始層zh_TW
dc.subject瑞利問題zh_TW
dc.subject擴散反射邊界條件zh_TW
dc.subjectBKW equationen
dc.subjectdiffuse-reflection boundary conditionen
dc.subjectinitial layeren
dc.subjectRayleigh problemen
dc.subjectBoltzmann equationen
dc.title瑞利問題的初始層zh_TW
dc.titleThe Initial Layer for Rayleigh Problemen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee劉豐哲,王振男,林太家,陳俊全,夏俊雄
dc.subject.keyword波茲曼-克魯克-偉蘭德方程,波茲曼方程,瑞利問題,初始層,擴散反射邊界條件,zh_TW
dc.subject.keywordBKW equation,Boltzmann equation,Rayleigh problem,initial layer,diffuse-reflection boundary condition,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2010-10-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
473.94 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved