請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48731完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉太平 | |
| dc.contributor.author | Hung-Wen Kuo | en |
| dc.contributor.author | 郭鴻文 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:10:52Z | - |
| dc.date.available | 2011-10-22 | |
| dc.date.copyright | 2010-10-22 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-10-13 | |
| dc.identifier.citation | [1] C. Cercignani, R. Illner and M. Pulvirenti, “The mathematical theory of dilute gases,” Applied Mathematical Sciences, 106. Springer, New York, 1994.
[2] Eugene P. Gross and E. Atlee. Jackson, Kinetic theory of the impulsive motion of an infinite plane, Phys. Fluids, 1 (1958), 318–328. [3] Hsun-Tiao Yang and Lester. Lees, Rayleigh’s problem at low Mach number according to the kinetic theory of gases, J. Math. and Phys, 35 (1956), 192–235. [4] Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem, Phys. Fluids, 7 (1964), 470–471. [5] Y. Sone, “Kinetic theory and fluid dynamics,” Modeling and Simulation in Science, Engineering and Technology, Birkh¨auser Boston, Inc., Boston, MA, 2002. [6] Y. Sone, “Molecular gas dynamics. Theory, techniques, and applications.” Modeling and Simulation in Science, Engineering and Technology, Birkh¨auser Boston, Inc., Boston, MA, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48731 | - |
| dc.description.abstract | In this thesis, we investigate the initial layer for Rayleigh problem of an infinite flat plate set into uniform motion impulsively in its own plane.
Rayleigh considered that the fluid is viscous and incompressible and that its motion is governed by the Navier-Stokes equation with the non-slip boundary condition. However, Y.Sone [4] found that the Navier-Stokes equation is not inadequate for the description of the gas shortly after the plane has been set into motion. He investigated the short time behavior of Rayleigh flow with the linearized BKW model equation and obtained the approximation of the flow velocity. We study Rayleigh problem by using the linearized BKW model, the linearized Boltzmann equation and the full Boltzmann equation, respectively. The purpose is to study the gas motion under the diffuse reflection boundary condition. For a small impulsive velocity (small Mach number) and short time, the flow behaves like a free molecule flow. Our analysis is based on certain pointwise estimates for the solution of the problem and flow velocity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:10:52Z (GMT). No. of bitstreams: 1 ntu-99-D94221001-1.pdf: 485318 bytes, checksum: 1c000e5c6581c6f9bd4827c886918f07 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝i
摘要ii Abstract iii Contents iv 1 Introduction 1 2 Preliminaries 10 3 Free Transport Equation 15 4 Linearized BKW equation 17 4.1 Integral form of flow velocity . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Existence of solution and pointwise estimate on flow velocity . . . . . 18 4.3 Approximation of flow velocity . . . . . . . . . . . . . . . . . . . . . . 24 5 Linearized Boltzmann equation 35 5.1 Integral form of solution and the existence of solution . . . . . . . . . 35 5.2 Pointwise estimate on flow velocity . . . . . . . . . . . . . . . . . . . 38 6 Full Boltzmann equation 41 6.1 Integral form of solution and the existence of solution . . . . . . . . . 41 6.2 Pointwise estimate on mass flux . . . . . . . . . . . . . . . . . . . . . 50 7 Appendix 55 7.1 Nondimensional Boltzmann equation . . . . . . . . . . . . . . . . . . 55 7.2 Uniqueness of solution of the linearized Boltzmann equation . . . . . 56 Bibliography 59 | |
| dc.language.iso | en | |
| dc.subject | 波茲曼方程 | zh_TW |
| dc.subject | 波茲曼-克魯克-偉蘭德方程 | zh_TW |
| dc.subject | 初始層 | zh_TW |
| dc.subject | 瑞利問題 | zh_TW |
| dc.subject | 擴散反射邊界條件 | zh_TW |
| dc.subject | BKW equation | en |
| dc.subject | diffuse-reflection boundary condition | en |
| dc.subject | initial layer | en |
| dc.subject | Rayleigh problem | en |
| dc.subject | Boltzmann equation | en |
| dc.title | 瑞利問題的初始層 | zh_TW |
| dc.title | The Initial Layer for Rayleigh Problem | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉豐哲,王振男,林太家,陳俊全,夏俊雄 | |
| dc.subject.keyword | 波茲曼-克魯克-偉蘭德方程,波茲曼方程,瑞利問題,初始層,擴散反射邊界條件, | zh_TW |
| dc.subject.keyword | BKW equation,Boltzmann equation,Rayleigh problem,initial layer,diffuse-reflection boundary condition, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-10-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 473.94 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
