請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48713完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮山(Long-Sun Huang) | |
| dc.contributor.author | Ping-Yen Lin | en |
| dc.contributor.author | 林品延 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:09:53Z | - |
| dc.date.available | 2015-10-31 | |
| dc.date.copyright | 2010-10-31 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-10-18 | |
| dc.identifier.citation | [1] Binnig, G., Quate, C. F., and Gerber, C., 'Atomic Force Microscope'. Physical Review Letters, 1986. 56(9): p. 930.
[2] Thundat, T., Warmack, R. J., Chen, G. Y., and Allison, D. P., 'Thermal and ambient-induced deflections of scanning force microscope cantilevers'. Applied Physics Letters, 1994. 64(21): p. 2894-2896. [3] Barnes, J. R., Stephenson, R. J., Welland, M. E., Gerber, C., and Gimzewski, J. K., 'Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device'. Nature, 1994. 372(6501): p. 79-81. [4] Ziegler, C., 'Cantilever-based biosensors'. Analytical and Bioanalytical Chemistry, 2004. 379(7): p. 946-959. [5] Baller, M. K., Lang, H. P., Fritz, J., Gerber, C., Gimzewski, J. K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F. M., Ramseyer, J. P., Fornaro, P., Meyer, E., and Güntherodt, H. J., 'A cantilever array-based artificial nose'. Ultramicroscopy, 2000. 82(1-4): p. 1-9. [6] Berger, R., Delamarche, E., Lang, H. P., Gerber, C., Gimzewski, J. K., Meyer, E., and Guntherodt, H.-J., 'Surface Stress in the Self-Assembly of Alkanethiols on Gold'. Science, 1997. 276(5321): p. 2021-2024. [7] Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., G, -. J., Uuml, Ntherodt, H., Gerber, C., and Gimzewski, J. K., 'Translating Biomolecular Recognition into Nanomechanics'. Science, 2000. 288(5464): p. 316-318. [8] Ilic, B., Czaplewski, D., Zalalutdinov, M., Craighead, H. G., Neuzil, P., Campagnolo, C., and Batt, C., 'Single cell detection with micromechanical oscillators'. Journal of Vacuum Science & Technology B, 2001. 19: p. 2825-2828. [9] Ilic, B., Yang, Y., and Craighead, H. G., 'Virus detection using nanoelectromechanical devices'. Applied Physics Letters, 2004. 85(13): p. 2604-2606. [10] Arntz, Y., Seelig, J. D., Lang, H. P., Zhang, J., Hunziker, P., Ramseyer, J. P., Meyer, E., Hegner, M., and Gerber, C., 'Label-free protein assay based on a nanomechanical cantilever array'. Nanotechnology, 2003. 14(1): p. 86. [11] Meyer, G. and Amer, N. M., 'Novel optical approach to atomic force microscopy'. Applied Physics Letters, 1988. 53(12): p. 1045-1047. [12] Napoli, M., Bamieh, B., and Turner, K., 'A capacitive microcantilever: Modelling, validation, and estimation using current measurements'. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2004. 126(2): p. 319-326. [13] Pramanik, C., Saha, H., and Gangopadhyay, U., 'Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications'. Journal of Micromechanics and Microengineering, 2006. 16(10): p. 2060-2066. [14] Available from: http://depart.femh.org.tw/femhlab/BNP.html. [15] Shekhawat, G., Tark, S. H., and Dravid, V. P., 'MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors'. Science, 2006. 311(5767): p. 1592-1595. [16] Tark, S.-H., Srivastava, A., Chou, S., Shekhawat, G., and Dravid, V. P., 'Nanomechanoelectronic signal transduction scheme with metal-oxide-semiconductor field-effect transistor-embedded microcantilevers'. Applied Physics Letters, 2009. 94(10): p. 104101-104101-3. [17] 林世明, 應用生化學講義. [18] Bergveld, P., 'Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements'. Biomedical Engineering, IEEE Transactions on, 1970. BME-17(1): p. 70-71. [19] Schöning, M. J. and Poghossian, A., 'Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions'. Electroanalysis, 2006. 18(19-20): p. 1893-1900. [20] Estrela, P., Li, P., Keighley, S. D., and Migliorato, P., 'Label-Free Electrical Biosensor Arrays: A New Challenge for TFT Technology'. Journal of Korean Physical Society, 2009. 54: p. 498-504. [21] Cattral, R. W., Chemical Sensors. 1997: Oxford University Press. [22] Yan, F., Estrela, P., Mo, Y., Migliorato, P., Maeda, H., Inoue, S., and Shimoda, T., 'Polycrystalline silicon ion sensitive field effect transistors'. Applied Physics Letters, 2005. 86(5): p. 053901-3. [23] Estrela, P., Stewart, A. G., Yan, F., and Migliorato, P., 'Field effect detection of biomolecular interactions'. Electrochimica Acta, 2005. 50(25-26): p. 4995-5000. [24] Estrela, P., Paul, D., Li, P., Keighley, S. D., Migliorato, P., Laurenson, S., and Ferrigno, P. K., 'Label-Free Detection of Protein interactions with peptide aptamers by open circuit potential measurement'. Electrochimica Acta, 2008. 53(22): p. 6489-6496. [25] Sedra, A. S. and Smith, K. C., Microelectronic Circuits. 2004: Oxford University Press. [26] Ma, E. Y.-S., Thin-Film Transistors for Macroelectronics - Devices, Substrates, and Processes. 1999: UMI. [27] 劉漢文, 影像顯示科技導論, 國立中興大學電機工程系暨光電工程所. [28] Available from: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/electric.html. [29] 施敏, 半導體元件物理與製作技術. 2 ed. 2002: 國立交通大學出版社. [30] Kuo, Y., Thin Film Transistors 2 Volume Set: Materials And Processes. Vol. 2. 2003: Springer. [31] Brotherton, S. D., 'Polycrystalline silicon thin film transistors'. Semiconductor Science and Technology, 1995. 10(6): p. 721. [32] Chern, H. N., Lee, C. L., and Lei, T. F., 'An analytical model for the above-threshold characteristics of polysilicon thin-film transistors'. Electron Devices, IEEE Transactions on, 1995. 42(7): p. 1240-1246. [33] Farmakis, F. V., Brini, J., Kamarinos, G., Angelis, C. T., Dimitriadis, C. A., and Miyasaka, M., 'On-current modeling of large-grain polycrystalline silicon thin-film transistors'. Electron Devices, IEEE Transactions on, 2001. 48(4): p. 701-706. [34] Fossum, J. G. and Ortiz-Conde, A., 'Effects of grain boundaries on the channel conductance of SOl MOSFET's'. Electron Devices, IEEE Transactions on, 1983. 30(8): p. 933-940. [35] Chen, H.-L. and Wu, C.-Y., 'An analytical grain-barrier height model and its characterization for intrinsic poly-Si thin-film transistor'. Electron Devices, IEEE Transactions on, 1998. 45(10): p. 2245-2247. [36] Cacciato, A., Benyaikh, F., Spinella, C., Rimin, E., Romano, P., and Ward, P., 'Electrical characterization of polycrystalline silicon films on Si substrates processed by rapid thermal annealing'. Semiconductor Science and Technology, 1993. 8(3): p. 327. [37] Morimoto, Y., Jinno, Y., Hirai, K., Ogata, H., Yamada, T., and Yoneda, K., 'Influence of the Grain Boundaries and Intragrain Defects on the Performance of Poly-Si Thin Film Transistors'. Journal of The Electrochemical Society, 1997. 144(7): p. 2495-2501. [38] Kuriyama, H., Nohda, T., Ishida, S., Kuwahara, T., Noguchi, S., Kiyama, S., Tsuda, S., and Nakano, S., 'Lateral Grain Growth of Poly-Si Films with a Specific Orientation by an Excimer Laser Annealing Method'. Japanese Journal of Applied Physics, 1993. 32: p. 6190-6195. [39] Farmakis, F. V., Brini, J., Kamarinos, G., Angelis, C. T., Dimitriadis, C. A., Miyasaka, M., and Ouisse, T., 'Grain and grain-boundary control of the transfer characteristics of large-grain polycrystalline silicon thin-film transistors'. Solid-State Electronics, 2000. 44(6): p. 913-916. [40] In-Shik, H., Hee-Hwan, J., Ook-Sang, Y., Won-Ho, C., Jung-Eun, L., Kyong-Jin, H., Sung-Hyung, P., Heui-Seung, L., Dae-Byung, K., and Hi-Deok, L., 'New Observation of Mobility and Reliability Dependence on Mechanical Film Stress in Strained Silicon CMOSFETs'. Electron Devices, IEEE Transactions on, 2008. 55(6): p. 1352-1358. [41] Irie, H., Kita, K., Kyuno, K., and Toriumi, A. In-plane mobility anisotropy and universality under uni-axial strains in nand p-MOS inversion layers on (100), [110], and (111) Si. in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004. [42] Cheon, J. H., Bae, J. H., and Jang, J., 'Mechanical stability of poly-Si TFT on metal foil'. Solid-State Electronics, 2008. 52(3): p. 473-477. [43] Kuo, P.-C., Jamshidi-Roudbari, A., and Hatalis, M., 'Effects of Mechanical Strain on Characteristics of Polycrystalline Silicon Thin-Film Transistors Fabricated on Stainless Steel Foil'. J. Display Technol., 2009. 5(6): p. 202-205. [44] Kuo, P.-C., Jamshidi-Roudbari, A., and Hatalis, M., 'Electrical characteristics and mechanical limitation of polycrystalline silicon thin film transistor on steel foil under strain'. Journal of Applied Physics, 2009. 106(11): p. 114502-5. [45] Huang, C. F., Yang, Y. J., Peng, C. Y., Yuan, F., and Liu, C. W., 'Mechanical strain effect of n-channel polycrystalline silicon thin-film transistors'. Applied Physics Letters, 2006. 89(10): p. 103502-3. [46] Kuo, P.-C., Jamshidi-Roudbari, A., and Hatalis, M., 'Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil'. Applied Physics Letters, 2007. 91(24): p. 243507-243507-3. [47] Stoney, G. G., 'The Tension of Metallic Films Deposited by Electrolysis'. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1909. 82(553): p. 172-175. [48] Goeders, K. M., Colton, J. S., and Bottomley, L. A., 'Microcantilevers: Sensing Chemical Interactions via Mechanical Motion'. Chemical Reviews, 2008. 108(2): p. 522-542. [49] Thaysen, J., Cantilever for bio-chemical sensing integrated in a microliquid handling system, 2001.Ph. D. Thesis. 132. [50] Available from: http://cleanroom.byu.edu/ImplantConCal.phtml. [51] 辜煜夫, 壓阻式微懸臂梁生化感測器系統溫度效應之量測、消除與應用, 2009.碩士論文. 190. [52] Goericke, F. T. and King, W. P., 'Modeling Piezoresistive Microcantilever Sensor Response to Surface Stress for Biochemical Sensors'. Sensors Journal, IEEE, 2008. 8(8): p. 1404-1410. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48713 | - |
| dc.description.abstract | 隨著全球逐漸步入高齡化社會,各國醫療資源越來越不敷使用,尤其是老年人好發的心血管疾病,極耗費醫療資源,由於現行血液相關生醫檢測設備龐大,加上人力、時間與空間成本高昂,成為落實心血管疾病定期即時檢測的阻礙。如何將血液相關生醫檢測系統微型化、具可攜帶性與方便性、合理成本且仍具準確性,便成為一項重要的課題。
本研究針對以力學為基礎的微懸臂樑生物感測器進行探討,並採用多晶矽薄膜電晶體做為訊號轉換機制,訊號轉換時不會與環境介質接觸。本研究利用半導體及微機電製程技術將薄膜電晶體製作於微懸臂樑上,完成之多晶矽電晶體電子遷移率為22~25 cm2/Vs。本研究探討了微懸臂樑懸浮前後電晶體電性的改變,懸浮後的電晶體電性有所提升,但在閘極電壓超過8V後電晶體因漏電而失去標準電性。其中電晶體通道方向垂直於微懸臂樑時受應變時的電流變化量為平行時的5倍左右。應力變化與電晶體之電性特性研究上,利用探針下壓微懸臂樑量測電晶體飽和電流變化之實驗結果顯示,本感測器之電晶體飽和電流靈敏度為0.08 μA/μm。 本論文為首度研究將多晶矽之薄膜電晶體製作在微懸臂樑上之研究,未來改善製程使靈敏度提升後,結合感測器與量測及放大電路,達到微小化整合量測晶片,不但能減少量測儀器成本,更能讓即時量測、可攜式、可拋棄式之整合量測晶片的理想實現。 | zh_TW |
| dc.description.abstract | As elderly population for most developed countries continues to grow, and consume healthcare funds, an increasing proportion of gross domestic product (GDP) is absorbed by escalating healthcare costs. As a result, introduction of the telecare/telemedicine technology proves to offer advantages of fewer emergency admissions, and dramatically lower care cost per patient through improved condition management. To fulfill the service of rapid diagnostics at home, miniaturization and portability of medical instruments are required for specific healthcare of post-hospital follows-up.
This study utilizes thin-film transistor (TFT) as a sensing transducer to convert induced stresses of a microcantilever into an electrical signal. The TFT-based microcantilever was made by micro-electromechanical system (MEMS) fabrication technology. The mobility of polysilicon TFT fabricated in this work was measured to be 22~25 cm2/Vs. This study has proven to reveal significant increase of drain current of released microcantilevers in comparison with the un-released devices. Meanwhile, significant change of output signal of transverse n-channel direction with respect to strain was found to be five times greater than that of longitudinal one. Higher gate voltage of 8 volts resulted in current leakage to the suspended thin-film transistor. It was also found that the TFT drain current sensitivity of the chip was measured to be 0.08 μA/μm. This study pioneered to design and fabricate poly-Si TFT onto a suspended microcantilever. Integration of existed integrated circuits is highly feasible and compatible with the TFT microcantilever. As a result, the miniaturized and integrated microcantilever for biosensors is highly anticipated to be realized in future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:09:53Z (GMT). No. of bitstreams: 1 ntu-99-R97543003-1.pdf: 4672282 bytes, checksum: 33aa3c84574694fa47585fbfe2d560c2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 III Abstract IV 目錄 III 圖目錄 VIII 表目錄 XI 第一章、序論 1 1.1引言 1 1.2文獻回顧 2 1.3研究動機 9 1.4論文大綱 10 第二章、薄膜電晶體式生物感測器 13 2.1生物感測器基本原理 13 2.2生物分子專一性鍵結原理 14 2.3辨識分子固定化技術 15 2.4薄膜電晶體式生物感測器 19 2.5總結 20 第三章、薄膜電晶體式微懸臂樑生物感測器運作機制與理論 21 3.1薄膜電晶體的運作原理 21 3.2薄膜電晶體的結構與通道材料 23 3.3多晶矽薄膜電晶體的缺陷與電性 25 3.4多晶矽載子遷移率改善之製程方法 29 3.5電晶體受應變的變化理論 32 3.6微懸臂樑生物感測器彎曲理論 34 3.7薄膜電晶體式微懸臂樑生物感測器之運作原理 38 第四章、薄膜電晶體式微懸臂樑生物感測器設計與模擬 41 4.1薄膜電晶體之設計 41 4.1.1通道材料 41 4.1.2摻雜離子 41 4.1.3摻雜濃度 42 4.1.4通道長寬比 42 4.1.5通道材料品質 42 4.2薄膜電晶體式微懸臂樑之設計 43 4.2.1薄膜厚度 43 4.2.2電晶體的位置與方向設計 46 4.3電晶體模擬 47 4.3.1單晶矽通道場效電晶體模擬 47 4.3.2多晶矽通道場效電晶體模擬 49 4.3.3多晶矽薄膜電晶體模擬 50 第五章、薄膜電晶體式微懸臂樑生物感測器製程設計 53 5.1薄膜電晶體式微懸臂樑生物感測器之設計 53 5.2薄膜電晶體式微懸臂樑生物感測器之製作 55 5.3製程問題檢討 59 5.4退火對多晶矽晶粒大小的實驗結果 62 第六章、實驗與結果 65 6.1實驗架設 65 6.2實驗流程 66 6.3實驗結果 66 第七章、結論與未來展望 77 7.1結論 77 7.2未來展望 78 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 微懸臂樑 | zh_TW |
| dc.subject | 表面應力 | zh_TW |
| dc.subject | 微機電 | zh_TW |
| dc.subject | Thin-film transistor (TFT) | en |
| dc.subject | Microcantilever | en |
| dc.subject | Micro-electromechanical system (MEMS) | en |
| dc.subject | Surface stress | en |
| dc.title | 薄膜電晶體式微懸臂樑生物感測器之設計與製作 | zh_TW |
| dc.title | Design and Fabrication of Thin-Film Transistor-based Microcantilever Biosensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳兆勛(Chao-Hsun Chen),陳俊杉(Chuin-Shan Chen) | |
| dc.subject.keyword | 微懸臂樑,薄膜電晶體,表面應力,微機電, | zh_TW |
| dc.subject.keyword | Microcantilever,Thin-film transistor (TFT),Surface stress,Micro-electromechanical system (MEMS), | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-10-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
