請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48710
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林長平 | |
dc.contributor.author | Yi-Ting Su | en |
dc.contributor.author | 蘇意婷 | zh_TW |
dc.date.accessioned | 2021-06-15T07:09:43Z | - |
dc.date.available | 2013-10-31 | |
dc.date.copyright | 2010-10-31 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-10-20 | |
dc.identifier.citation | 1. 朱俞蓉. 1998. 花生簇葉病病原菌質體 recA 基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
2. 呂沛穎、林長平. 2009. 花生簇葉病菌質體rpsT, serS與hflB基因之選殖與分析. 植病會刊 18: 57-66. 3. 林翠淳. 1996. 植物菌質體廣效型PCR引子之評估及疑似梨衰弱病病原菌質體之檢測. 國立台灣大學植物病理與微生物學研究所碩士論文。 4. 紀凱齡、林長平. 2005. 花生簇葉病菌質體polC基因之選殖與分析. 植病會刊 14: 51-58. 5. 莊景光、林長平. 2000. 花生簇葉病病原菌質體gyrB和gyrA基因之選殖. 植病會刊 9: 157-166. 6. 陳紹寬. 1997. 花生簇葉病菌質體 RNA 聚合酵素Sigma Factor基因之選殖及分析.國立台灣大學植物病蟲害學研究所碩士論文。 7. 黃俊霖 1996. 絲瓜簇葉病植物菌質體可能的ABC轉運系統基因之分離及特性分析. 國立台灣大學植物學研究所碩士論文. 8. 黃婷榆、林長平. 2009. 花生簇葉病菌質體dnaB1和dnaG基因之選殖與分析. 植保會刊. 9. 程諭揚. 2009. 植物菌質體之優勢免疫膜蛋白基因 imp, idpA 與 amp 之選殖與分析. 國立台灣大學植物病理與微生物學研究所碩士論文。 10. 鄧靜雯. 1999. 花生簇葉病病原菌質體 RNA 聚合酵素β 亞單位基因之選殖. 國立台灣大學植物病蟲害學研究所碩士論文。 11. 魏慧珍、林長平. 2004. 以逢機定序方式選殖花生簇葉病菌質體之質體及插入序列. 植病會刊 13: 125-136. 12. André, A., Maucourt, M., Moing, A., Rolin, D., and Renaudin, J. 2005. Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. Mol. Plant Microbe Interact.18: 33-42. 13. Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and Tunen, A.J. 1994. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5:33-44. 14. Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687-703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA. 15. Bai, X., Zhang, J., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J. W., and Hogenhout, S. A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682-3696. 16. Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598-607. 17. Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedling. Phytopathology 68: 1733-1737. 18. Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471-6478. 19. Coen, E. S., and Meyerowitz, E. M. 1991. The war of the whorls-genetic interactions controlling flower development. Nature 353: 31-37. 20. Davey J. E., Vanstaden, J., and Deleeuw G., T. N. 1981. Endogenous cytokinin levels and development of flower virescence in Catharanthus roseus infected with mycoplasmas. Physiol Plant Pathol 19:193-200. 21. Denes, A. S., and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189-196. 22. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan 33: 259-266. 23. Egea Gutierrez-Cortines, M. and Davies, B. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci. 2000. 5:471–6. 24. Gundersen, D. E., and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35: 144-151. 25. Hogenhout, S., Oshima, K., Ammar, E., Kakizawa, S., Kingdom, H., and Namba, S. 2008. Phytoplasma: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9: 403-423. 26. Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozekia, J., Hashimotoa, M., Komatsua, K., Kagiwada, S., Yamaji, Y. and Namba, S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc. Natl. Acad. Sci. U.S.A. 106: 6416–6421 27. Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504-506. 28. IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group. 2004. “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1245-1255. 29. Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267-275. 30. Ishii, Y., Oshima, K., Kakizawa, S., Hoshi, A., Maejima, K., Kagiwada, S., Yamaji, Y., and Namba, S. 2009. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 446: 51-57. 31. Jagoueix-Eveillard, S., Tarendeau, F., Guolter, K., Danet, J., Bovè, J. M., and Garnier, M. 2001. Catharanthus roseus genes regulated differentially by Mollicute infections. Mol. Plant-Microbe Interact. 14:225-233. 32. Jomantiene, R., Davis, R. E., Valiunas, D., Alminaite, A., and Staniulis, J. 2002. New group 16SrIII phytoplasma lineages in Lithuania exhibit interoperon sequence heterogeneity. Eur. J. Plant Pathol. 108: 507-517. 33. Junquueira, A., Bedendo, I., and Pascholati, S. 2004. Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiol. Mol. Plant Pathol. 65: 181-185. 34. Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M., and Namba, S. 2004. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150: 135-142. 35. Keck, E., McSteen, P., Carpenter, R., and Coen, E. 2003. Separation of genetic functions controlling organ identity in flowers. EMBO J. 22: 1058-1066. 36. Kesumawati, E., Kimata, T., and Uemachi, T. 2006. Correlation of phytoplasma concentration in Hydrangea macrophylla with green-flowering stability. Sci. Hortic. 108: 74-78. 37. Kirkpatrick, B. C., Stenger, D. C., Morris, T. J., and Purcell, A. H. 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238: 197-200. 38. Kitamura, Y., Hosokawa, M., Uemachi, T., and Yazawa, S. 2009. Selection of ABC genes for candidate genes of morphological changes in hydrangea floral organs induced by phytoplasma infection. Sci. Hortic. 122: 603-609. 39. Kramer, E. M., and Irish, V. F. 1999. Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148. 40. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., and Seemuller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma “Candidatus Phytoplasma mali”. BMC Genomics. 41. Lee, I. M., Davis, R. E., and Gundersen-Rindal, D. E. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-255. 42. Lee, C., Kim, J., Shin, S. G., and Hwang, S. 2006. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273-280. 43. Lee, I.-M., Bottner, K. D., Secor, G., and Rivera-Varas, V. 2006b. “Candidatus Phytoplasma americanum”, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56: 1593-1597. 44. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I.-M. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48: 1153-1169. 45. Lee, I. M., Davis, R. E., Sinclair, W. A. Dewitt, N. D., and Conti, M. 1993. Genetic relatedness of mycoplasmalike organisms detected in Ulmus spp. In the United States and Italy by means of DNA probes and polymerase chain reactions. Phytopathology 83: 829-833. 46. Lee, I.-M., Zhao, Y., and Bottner, K. D. 2006a. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma groups. Mol. Cell. Probes. 20: 87-91. 47. Lepka, P., Stitt, M., Moll, E., and Seemüller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59-68. 48. Lim, P. O. and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128-2130. 49. Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606-2611. 50. Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606-2611. 51. Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant-pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682-686. 52. Lin, C. L., Zhou, T., Li, H. F., Fan, Z. F., Li, Y., Piao, C. G., and Tian, G. Z. 2009. Molecular characterisation of two plasmids from paulownia witches'-broom phytoplasma and detection of a plasmid-encoded protein in infected plants. Eur. J. Plant Pathol. 123: 321-330. 53. Lin, C. P., and Chen, T. A. 1985. Monoclonal antibodies against the aster yellows agent. Science 227: 1233-1235. 54. Lu, H.C., Chen, H.H., Tsai, W.C., Chen, W.H., Su, H.J., Chang, D.C., and Yeh, H.H., 2007.Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143: 558–569. 55. Martini, M., Lee, I.-M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., and Osler, R. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int. J. Syst. Evol. Microbiol. 57: 2037-2051. 56. Marzachı`, C., and Bosco, D. 2005. Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol. Biotechnol. 30: 117-127. 57. Maust B.E., Espadas F., Talavera C., Aguilar M., Santamarı’a J.M., and Oropeza C. 2003. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–981. 58. McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiykowski, L. N., Cousin, M. T., Dale De Leeuw, G.T.N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C., Suguira, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemüller, E. 1989. Plant diseases associated with mycoplasma-like organisms. Pages 546-640 in: The Mycoplasmas (Whitcomb, R.F. and Tully, J.G., eds). Academic Press, San Diego, CA. 59. Murray, R. G., and Stackebrandt, E. 1995. Taxonomic note: implementation of provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45: 186-187. 60. Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133-147. 61. Musetti, R., Paolacci, A., Ciaffi, M., Tanzarella, O. A., Polizzotto, R., Tubaro, F., Mizzau, M., Ermacora, P., Badiani, M., and Osler, R. 2010. Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology 100:390-399 62. Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell 2: 279-289. 63. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27-29. 64. Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., and Yanofsky, M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 2000. 405:200–3. 65. Perica, M. 2008. Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J. Appl. Microbiol.105: 1826-1834. 66. Pertot, I., Musetti, R Pressacco, L., and Osler, R. 1998. Changes in indole-3-acetic acid level in micropropagated tissues of Catharanthus roseus L. infected by the agent of the clover phyllody and effect of exogenous auxins on phytoplasma morphology. Cytobios 95: 13-23. 67. Piovan, A., and Filippini, R. 2007. Anthocyanins in Catharanthus roseus in vivo and in vitro: a review. Phytochem Rev 6: 235-242. 68. Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., and Yanofsky, M. F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. 69. Pracros, P., Renaudin, J., Eveillard, S., Mouras, A. and Hernould, M. 2005. Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol. Plant Microbe Interact. 19:62-68. 70. Schneider, B., Ahrens, U., Kirkpatrick, B. C., and Seemüller, E. 1993. Classification of plant- pathogenic mycroplasma-like organisms using restriction- site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol. 139: 519-527 71. Schneider, B., Gibb, K. S., and Seemuller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasma. Microbiology 143: 3381-3389. 72. Schneider, B., and Seemüller, E. 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl. Environ. Microbiol. 60: 3409-3412. 73. Schneider, B., Seemüller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369-380 in: Molecular and diagnostic procedures in mycoplasmology, vol. 1. S. Razin, and J. G. Tully eds. Academic Press, San Diego, CA. 74. Schneider, B., and Gibb, K. S. 1997. Detection of phytoplasmas in declining pears in southern Australia. Plant Dis. 81: 254-258. 75. Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275-287. 76. Seemüller, E., Schneider, B., Mäurer, R., Ahrens, U., Daire, X., Kison, H., Lorenz, K.- H., Firrao, G., Avinent, L., Sears, B. B., and Stackebrandt, E. 1994. Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. Int. J. Sys. Bacteriol. 44: 440-446. 77. Seemüller, E., Marcone, C., Lauer, U., Ragozzino. A., and Göschl , M. 1998b. Current status of molecular classification of the phytoplasma. J. Plant Pathol. 80: 3-26. 78. Shao, J. Y., Jomantiene, R., Dally, E. L., Zhao, Y., Lee, I.-M., Nuss, D. L., and Davis, R. E. 2006. NusA: comparative properties, phylogeny, and use in detection of group 16Srl phytoplasmas. J. Plant Pathol. 88: 193-201. 79. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens U, Lorenz, K. H., Seemüller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988-2993. 80. Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842. 81. Tanaka, Y., and Ohmiya, A. 2008b. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 19:190-197. 82. Tanaka, Y., Sasaki, N., and Ohmiya, A. 2008a. Biosynthesis of plant pigments: anthocyanins, betalains and Carotenoids. Plant J. 54: 733-749 83. Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of 'Candidatus Phytoplasma australiense' (subgrouptuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J. Bacteriol. 190: 3979-3991. 84. Theissen G., and Saedler H. 2001. Floral quartets. Nature 409: 469-471. 85. Vivian, A., Murillo, J., and Jackson, R.W. 2001. The roles of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology 147: 763-780. 86. Wei, W., Lee, I.-M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern composition and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368-2377. 87. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. U. S. A. 82: 2306-2309. 88. Yu, Y. L., Yeh, K. W., and Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches' broom. Microbiology 144: 1257-1262. 89. Zhao, Y., Wei, W., Davis, R.E., Lee, I. 2010. Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. Phytoplasmas: Genomes, Plant Hosts and Vectors. p. 64-92. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48710 | - |
dc.description.abstract | 植物菌質體感日日春染後會造成花器發育不正常,包含花瓣褪色、花器綠化、葉片化等及枝條增生、葉片變小、生長遲緩、簇葉、植株萎凋及黃化等病徵。其中造成花器異常的現象即為植物菌質體病害的一種特殊現象。本論文之研究目的即在於探討植物菌質體感染之後植物花器病徵造成的原因以及對植物菌質體生長之意義。研究指出,花器官的發育是由 A class (AP1 及 AP2 ), B class (AP3 及 PI), C class (AG) 及 E class (SEP) 四群基因的交互作用所共同調控的。而花色的生合成則仰賴 chalcone synthase 基因及 chalcone isomerase 基因的作用。因此在本研究中即利用同步聚合酵素連鎖反應之相對定量方法,分析日日春葉片黃化病植物菌質體及花生簇葉病植物菌質體罹病日日春,於花形變化三階段之花形決定基因 B class AP3 及 PI、 C class AG 及 E class SEP3 與花色決定基因 chalcone synthase 基因 (CHS) 及 chalcone isomerase 基因 (CHI) 等各基因表現量之變化。結果顯示 B class 基因中的 AP3 基因的表現量,在兩種植物菌質體感染之花器中皆隨著病徵嚴重程度的增加而逐漸下降,PI 基因於花生簇葉病感染之日日春中有階段性下降的趨勢且下降的幅度較大,但在日日春葉片黃化病感染之日日春中,並無階段性的改變且基因表現的下降幅度較小。C class基因 AG 的表現量,在兩種植物菌質體感染之花器中皆未隨著花形變化嚴重程度之增加而下降。E class 基因 SEP3 基因為花形決定各測定基因中表現量下降最多者,且在花生簇葉病感染之日日春中會隨著病徵嚴重程度之增加而下降,而 SEP3 基因在日日春葉片黃化病感染之日日春中,於第一階段花形變化之花器中表現量最低。花色決定基因當中 CHS 基因的表現量下降程度較 CHI 基因下降程度大。另外,本研究亦利用同步聚合酵素連鎖反應中的絕對定量方法,分析植物菌質體罹病日日春之花器及其花器周圍葉片之菌量,試圖找出植物菌質體與病徵發展的相關性。依罹病日日春花形變化三階段之花器及其周圍葉片菌量之定量結果,顯示在兩種植物菌質體感染之日日春當中,罹病花器菌質體菌量皆隨著花器病徵的嚴重程度的增加而累積量明顯上升,在受花生簇葉病植物菌質體感染之第三階段花形變化之花器中,其菌量累積量高於週圍葉片之菌量累積量達五倍之多,而在受日日春葉片黃化病植物菌質體感染之第三階段花形變化之花器中,其菌量累積量亦高於週圍葉片之菌量累積量達三倍之多。由結果得知,日日春受植物菌質體感染後,花器形態及花色的改變與花形及花色決定基因表現量之下降有關,且植物菌質體之感染造成日日春花器形態之改變,有利於植物菌質體在罹病植株中族群量之增加。 | zh_TW |
dc.description.abstract | Phytoplasmas infected periwinkles exhibit flower malformation, including petal discoloration, virescence, phyllody, witches’ broom, and other severe symptoms such as leaf yellowing, and stem proliferation. The flower malformation is a very unique symptom in phytoplasma-infected plants. Therefore, this research aims to elucidate how and why phytoplasma cause the special symptom. Because flower organ identity is regulated by A-class (AP1 and AP2), B-class (AP3 and PI), C-class (AG) and-E class gene (SEP) and flower pigment synthesis requires chalcone synthase (CHS) and chalcone isomerase (CHI), four floral organ identity genes, AP3, PI, AG and SEP3 and two pigment synthesis genes, CHS and CHI were analyzed using relative real time RT-PCR to compare the expression levels of those genes in three floral malformation stages of periwinkle infected with periwinkle leaf yellowing phytoplama (PLY phytoplasma) or peanut witches’ broom phytoplasma (PnWB phytoplasma). Expression of all floral organ identity genes and pigment synthesis genes was down-regulated. Suppression of AP3 gene followed the severity of floral malformation stages in both phytoplasma infected periwinkles. The suppression of PI gene was more severe in PnWB phytoplasma infected periwinkles than that in PLY phytoplasma infected plants. Trend of this suppression in PnWB phytoplasma infected periwinkles was similar to that of AP3 suppression. Suppression of AG gene did not follow with the severity of floral malformation stages in both phytoplasma infected periwinkles. SEP3 gene showed the most significant suppression among examined floral organ identity genes in malformed flowers. Suppression of SEP3 also followed the severity of floral malformation in PnWB infected periwinkle ; however, did not exhibit the same correlation with severity in PLY infected periwinkles. Supression of both pigment synthesis genes, CHS and CHI, was close in stage 2 and stage 3 in both phytoplasma infected periwinkles. The suppression of CHI gene is less severe than that of CHS gene. Phytoplasma titers of the defined stages were also determined in flowers and their surrounding leaves using absolute quantitative real time PCR. Following the severity of floral malformation, phytoplasma accumulation increased especially in malformed flowers. At the stage three, the phytoplasma titer was around 5 fold higher in the stage 3 malformed leaf-like flowers than that in leaves in PnWB phytoplasma infected periwinkles, and was more than three fold higher in PLY phytoplasma infected plants. These results indicate that the phyllody and virescence caused by phytoplasma infection are correlated with the down-regulation of floral organ identity genes and pigment synthesis genes in periwinkle, and also suggest that the flower to leaf conversion caused by phytoplasma infection significantly promote phytoplasma accumulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:09:43Z (GMT). No. of bitstreams: 1 ntu-99-R97633016-1.pdf: 3285443 bytes, checksum: 3e865bb42ae3edcf8c603795bddb683a (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 論文口試委員審定書……………………………………………………………...…II
致謝……………………………………………………………………………….….Ⅲ 中文摘要………………………………………………………………………….…..V 英文摘要……………………………………………………………………………..VI 壹、 前言………………………………………………………………………………1 貳、 前人研究…………………………………………………………………………3 一、 植物菌質體之發現與其植物病理學………………………………………3 (一) 植物菌質體之發現……………………………………………………3 (二) 植物菌質體之植物病理學……………………………………………5 二、 植物菌質體之分群…………………………………………………………6 三、 植物菌質體之生物特性與其分子生物學上之研究………………...…….8 四、 花形決定基因之研究………………………………………………….….10 五、 花色決定基因之研究………………………………………………….….12 六、 植物菌質體罹病植物生理變化之研究……………………………….….12 (一) 植物荷爾蒙之相關研究………………………………………….….12 (二) 醣類代謝之相關研究………………………………………………..14 (三) 花器病徵之相關研究………………………………………………..15 (四) 花色之相關研究……………………………………………………..16 參、 材料與方法……………………………………………………………………..17 一、 研究材料…………………………………………………………………..17 (一) 試驗植物來源與繁殖………………………………………………..17 (二) 罹病日日春之花形變化三階段……………………………………..18 (三) 花生簇葉病植物菌質體罹病日日春之花器與植物菌質體菌量之關係……………………………………………………………………..18 二、 罹病日日春之花器形態…………………………………………………..19 (一) 解剖顯微鏡觀察……………………………………………………..19 (二) 石蠟切片觀察………………………………………………………..19 1. 石蠟包埋及切片…………………………………………………..19 2. 脫蠟及染色………………………………………………………..20 三、 健康與受植物菌質體感染之植物全 DNA 及 RNA 之純化………….20 (一) 大量抽取植物全 DNA……………………………………………...20 (二) 微量抽取植物全 DNA……………………………………………...21 (三) 健康及罹病日日春全 RNA 之純化……………………………..…22 四、 花形與花色決定基因之選殖…………………………………………..…23 (一) 第一股 cDNA 合成…………………………………………………24 (二) 聚合酵素連鎖反應 (PCR) 引子對之設計…………………………24 (三) 聚合酵素連鎖反應…………………………………………………..26 (四) 聚合酵素連鎖反應產物之純化與選殖…………………………..…26 1. 聚合酵素連鎖反應產物之膠體萃取 (gel extraction)…………...27 2. 聚合酵素連鎖反應產物之選殖…………………………………..27 (1) 黏合作用 (ligation)……………………………………………27 (2) 轉形作用 (transformation)…………………………………….28 (五) 聚合酵素連鎖反應轉形株之特性分析……………………………..28 1. 以菌落聚合酵素連鎖反應 (colony PCR) 分析轉形株之選殖片段…………………………………………………………..………28 2. 轉形株選殖片段之核酸定序與序列分析…………………….....29 五、 花形與花色決定基因3’ 端序之選殖………………………………….30 (一) 第一股 cDNA 合成…………………………………………………30 (二) 基因特異性引子 (gene specific primer) 之設計……………..……30 (三) 聚合酵素連鎖反應…………………………………………………..31 (四) 聚合酵素連鎖反應產物之純化選殖與序列分析…………….…….31 六、 以南方氏雜配反應 (Southern hybridization) 分析日日春花形、花色決定基因之套組數 (copy number)……………………………………………31 (一) 花形與花色決定基因探針之製備…………………………………..32 1. 核酸探針片段序列之增幅與選殖………………………………..32 (1) 核酸探針片段引子對之設計………………………………….32 (2) 聚合酵素連鎖反應…………………………………………….32 (3) 聚合酵素連鎖反應產物之選殖與序列分析………………….32 2. 核酸探針之標識 (labelling)………………………………...……33 (1) 重組質體DNA之純化……………………………………..….33 (2) 以聚合酵素連鎖反應標識核酸探針………………………….34 (二) 南方氏轉漬 (Southern blot) 及雜配反應 (hybridization)..………..35 1. 健康日日春花器全 DNA 之核酸限制酵素酵解………….……35 2. 南方氏轉漬. ………………………………………………………35 3. 雜配及呈色反應…………………………………………………..36 七、 以同步聚合酵素連鎖反應 (real-time PCR) 之相對定量測定罹病日日春花形變化三階段之花形與花色決定基因之mRNA表現量……………37 (一) 同步聚合酵素連鎖反應引子對之設計……………………………..37 (二) 以相對定量方式測定基因之mRNA表現量………………………38 1. 樣本之收集……………………………………………..…………38 2. 同步聚合酵素連鎖反應 (real-time PCR)……………..…………38 3. 基因表現量之計算………………………………………..………39 八、 以同步聚合酵素連鎖反應 (real-time PCR) 之絕對定量方式測定罹病日日春之花器與葉片帶菌量………………………………………..………40 (一) 同步聚合酵素連鎖反應引子對之設計………………………..……40 (二) 同步聚合酵素連鎖反應標準曲線 (standard curve) 之建構………41 1. 同步聚合酵素連鎖反應標準濃度DNA模板之製備…………....41 (1) 日日春葉片黃化病植物菌質體 amp基因之標準濃度人工DNA模板 (artificial DNA template) 之製備………………...41 (2) 花生簇葉病植物菌質體 imp基因之標準濃度人工DNA模板 (artificial DNA template) 之製備……………………………..42 (3) 健康日日春標準濃度DNA模板之製備……………………...43 2. 同步聚合酵素連鎖反應 (real-time PCR) ……………………….43 3. 標準曲線之建構…………………………………………………..44 (三) 以同步聚合酵素連鎖反應進行罹病日日春花形變化三階段之花器與周圍葉片菌量之定量……………………………………………45 1. 樣本之收集………………………………………………………..45 2. 同步聚合酵素連鎖反應 (real-time PCR)………………………..45 3. 罹病日日春菌量之計算…………………………………………..46 (四) 以同步聚合酵素連鎖反應進行罹病日日春花器與菌質體菌量關係之定量………………………………………………………………..46 1. 樣本之收集………………………………………………………..46 2. 同步聚合酵素連鎖反應 (real-time PCR)………………………..47 3. 罹病日日春菌量之計算…………………………………………..47 肆、 結果…………………………………………………………………………......48 一、 受植物菌質體感染之日日春花器形態之轉變…………………………..48 二、 花形與花色決定基因之分析……………………………………………..48 (一) 花形決定基因之分析………………………………………………..48 1. APETALATA 3 (AP3) 基因之分析………………………………..48 2. PISTILLATA (PI) 基因之分析……………………………………49 3. AGAMOUS (AG) 基因之分析……………………………………50 4. SEPTALLATA (SEP) 基因之分析………………...………………50 (二) 花色決定基因之分析………………………………………………..51 1. chalcone synthase (CHS) 基因之分析…………….……………..51 2. chalcone isomerase (CHI) 基因之分析…………………………..51 三、 植物菌質體感染造成的花形轉變與變化之相關性分析………………..52 (一) 花形與花色決定基因同步聚合酵素連鎖反應之引子對專一性測定………………………………………………………….………….52 (二) 植物菌質體感染造成的花形轉變與變化之相關性分析.………….54 四、 罹病日日春花形變化三階段花器及其周圍葉片之帶菌量……….……56 (一) 同步聚合酵素連鎖反應之引子對專一性測定…………..…………56 (二) 同步聚合酵素連鎖反應標準曲線之建構…………………………..57 1. 以 PLY-ampf2 / PLY-ampr2 引子對建構日日春葉片黃化病植物菌質體菌量之標準曲線…………………………..………………57 2. 以 PnWB-impf1 / PnWB-impr1 引子對建構花生簇葉病植物菌質體菌量之標準曲線…………………………..…………………58 3. 以UBQ-1252F/ UBQ-1392R 引子對建構日日春DNA質量之標準曲線…………………………..…………………………………59 (三) 以同步聚合酵素連鎖反應進行罹病日日春花形變化三階段花器及其周圍葉片菌量之定量……………………………………………..59 五、 花與花生簇葉病植物菌質體菌量增殖之關係…………………………..60 伍、 討論……………………………………………………………………………..62 陸、 參考文獻………………………………………………………………………..68 柒、 圖表……………………………………………………………………………..79 | |
dc.language.iso | zh-TW | |
dc.title | 植物菌質體罹病日日春花器葉片化、綠化之病徵發展及花形、花色決定基因之變化與植物菌質體菌量之關係 | zh_TW |
dc.title | The Correlation of Symptom Development in Phyllody and Virescence with Gene Expressions in Floral Organ Identity and Pigment Synthesis and with Phytoplasma Accumulation in Phytoplasma-infected Catharanthus roseus | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳仁治 | |
dc.contributor.oralexamcommittee | 曾國欽,張碧芳,洪挺軒 | |
dc.subject.keyword | 花器綠化,花器葉片化,花形相關決定基因,花色相關決定基因,同步聚合酵素連鎖反應, | zh_TW |
dc.subject.keyword | floral organ identity genes,phyllody,pigment synthesis genes,real-time PCR,virescence, | en |
dc.relation.page | 132 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-10-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。