請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48698完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | Chih-Hsien Lee | en |
| dc.contributor.author | 李治賢 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:09:04Z | - |
| dc.date.available | 2012-10-31 | |
| dc.date.copyright | 2010-10-31 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-10-22 | |
| dc.identifier.citation | [1] J. Y. Huang, X. D. Wang, and Z. L. Wang, 'Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,' Nanotechnology, vol. 19, Jan 2008.
[2] C. H. Chien and Z. P. Chen, 'Design and fabrication of the concentric circle light guiding plate for LED-backlight module by MEMS technique,' Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 13, Jul 2007. [3] G. Lee, J. H. Jeong, S. J. Yoon, and D. H. Choi, 'Design optimization for optical patterns in a light-guide panel to improve illuminance and uniformity of the liquid-crystal display,' Optical Engineering, vol. 48, Feb 2009. [4] C. L. Tai-cheng Yu, and Ga-lane Chen, 'Light Guide Plate,' United States Patent No. US20040095743, 2004. [5] H. Kikuta, H. Toyota, and W. J. Yu, 'Optical elements with subwavelength structured surfaces,' Optical Review, vol. 10, Mar-Apr 2003. [6] H. L. Chen, K. T. Huang, C. H. Lin, W. Y. Wang, and W. Fan, 'Fabrication of sub-wavelength antireflective structures in solar cells by utilizing modified illumination and defocus techniques in optical lithography,' Microelectronic Engineering, vol. 84, May-Aug 2007. [7] C. J. Ting, F. Y. Chang, C. F. Chen, and C. P. Chou, 'Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,' Journal of Micromechanics and Microengineering, vol. 18, Jul 2008. [8] S. A. Boden and D. M. Bagnall, 'Tunable reflection minima of nanostructured antireflective surfaces,' Applied Physics Letters, vol. 93, Sep 2008. [9] E. B. Grann, M. G. Moharam, and D. A. Pommet, 'OPTIMAL-DESIGN FOR ANTIREFLECTIVE TAPERED 2-DIMENSIONAL SUBWAVELENGTH GRATING STRUCTURES,' Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 12, Feb 1995. [10] K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, 'Antireflective structure imprinted on the surface of optical glass by SiC mold,' Applied Surface Science, vol. 255, Jan 2009. [11] H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, 'Fabrication of microcone array for antireflection structured surface using metal dotted pattern,' Japanese Journal of Applied Physics Part 2-Letters, vol. 40, Jul 2001. [12] M. K. Wei, J. H. Lee, H. Y. Lin, Y. H. Ho, K. Y. Chen, C. C. Lin, C. F. Wu, J. H. Tsai, and T. C. Wu, 'Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,' Journal of Optics a-Pure and Applied Optics, vol. 10, May 2008. [13] C. Y. Wu, T. H. Chiang, and C. C. Hsu, 'Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,' Optics Express, vol. 16, Nov 2008. [14] S. M. Kuo and C. H. Lin, 'The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,' Journal of Micromechanics and Microengineering, vol. 18, Dec 2008. [15] T. W. Lin, C. F. Chen, J. J. Yang, and Y. S. Liao, 'A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,' Journal of Micromechanics and Microengineering, vol. 18, Sep 2008. [16] S. I. Chang, J. B. Yoon, H. K. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, 'Microlens array diffuser for a light-emitting diode backlight system,' Optics Letters, vol. 31, Oct 2006. [17] H. Kwon, Y. Yee, C. H. Jeong, H. J. Nam, and J. U. Bu, 'A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes,' Journal of Micromechanics and Microengineering, vol. 18, Jun 2008. [18] L. W. Pan, X. J. Shen, and L. W. Lin, 'Microplastic lens array fabricated by a hot intrusion process,' Journal of Microelectromechanical Systems, vol. 13, Dec 2004. [19] J. J. Kim, S. Chae, and K. H. Jeong, 'Micropatterned single lens for wide-angle light-emitting diodes,' Optics Letters, vol. 35, Mar 2010. [20] X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, 'The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,' Advanced Materials, vol. 19, Sep 2007. [21] T. Yanagishita, K. Nishio, and H. Masuda, 'Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina,' Applied Physics Express, vol. 2, Feb 2009. [22] P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, 'Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,' Journal of the European Optical Society-Rapid Publications, vol. 5, 2010. [23] Y. Kanamori, M. Sasaki, and K. Hane, 'Broadband antireflection gratings fabricated upon silicon substrates,' Optics Letters, vol. 24, Oct 1999. [24] K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, 'Reflection properties of nanostructure-arrayed silicon surfaces,' Nanotechnology, vol. 11, Sep 2000. [25] W. L. Min, P. Jiang, and B. Jiang, 'Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,' Nanotechnology, vol. 19, Nov 2008. [26] J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, 'A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,' Microelectronic Engineering, vol. 87, 2010. [27] H. A. Macleod, 'Thin-film optical filters,' Institute of Physics Pub., Philadelphia :,, 2001. [28] C. Y. Chang, S. Y. Yang, and M. H. Chu, 'Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,' Microelectronic Engineering, vol. 84, Feb 2007. [29] S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, 'Fabrication of Sub-100 nm Sized Patterns on Curved Acryl Substrate Using a Flexible Stamp,' Japanese Journal of Applied Physics, vol. 47, May 2008. [30] C. W. Wu, Y. K. Shen, S. Y. Chuang, and C. S. Wei, 'Anti-adhesive effects of diverse self-assembled monolayers in nanoimprint lithography,' Sensors and Actuators a-Physical, vol. 139, Sep 2007. [31] R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, 'UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,' Microelectronic Engineering, vol. 87, May-Aug 2010. [32] H. Y. L. T. S. Kustandi, J. H. Teng, I. Rodriguez, and R. Yin 'Fabrication of Artificial Butterfly Wings Nanostructures: Iridescence and Restricted Viewing Angle Effects,' NNT'08 14B2-5-69, 2008. [33] C. H. Chien and Z. P. Chen, 'The study of integrated LED-backlight plate fabricated by micromachining technique,' Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, Mar 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48698 | - |
| dc.description.abstract | 由目前研究文獻中,二維次波長週期性錐形結構已經被提出可以有效地降低不同介質之交界面的反射率。雖然目前此種技術主要還是被傳統抗反射鍍膜支配著,但未來在我們必須微小化一些光學元件時,這種次波長抗反射結構的應用將會成為更合適的方法來取代傳統薄膜抗反射處理。然而已有研究指出蒼蠅複眼具有同時提升視角與增加光萃取量的特性。因此可預期此種整合微米及奈米之複層結構有潛力成為多功光學元件並且應用在LCD以及LED的光萃取等光電產業上。
在此論文中,我們將會利用雙光干涉微影術定義次波長結構。並且利用在離子蝕刻機(RIE)中蝕刻擋罩縮小的機制簡單地將錐形次波長結構製作在平面玻璃基材上。此外,我們利用光微影術及耦合式電漿離子機(ICP)於矽基材上製作微米結構。而後,我們將利用此兩種尺度的微/奈米模具於可撓性基材上製作複層結構。而我們所提出的方法主要是結合奈米壓印微影術及傳統熱擠出成型技術將含有次波長結構的平面轉換至微透鏡陣列上。因此這種方法是非常簡單且可重複製作人工複眼結構的技術。而且我們利用自行組裝的反射儀,來確定將次波長結構整合到微透鏡上後,抗反射效果仍然是有作用的。 最後我們在利用熱壓成型技術將可撓性基材上的複層結構轉印至直下式導光板的毫米半球曲面上。並且利用感光耦合元件相機與積分球來量測此含有複層結構導光板的穿透率與擴散率也驗證了這多功元件應用於背光模組的潛力。 | zh_TW |
| dc.description.abstract | It has been reported that two dimensional taper-shaped sub-wavelength periodic structures could reduce the reflectivity at the interface of different materials effectively. Though this technique is not widely used to replace traditional thin film coating presently, it is expected to become a more suitable solution when applied to ever smaller optical elements. It has been pointed out that compound eyes of flies have the ability to enhance both viewing angle and to increase light extraction efficiency simultaneously. Therefore, we expect such a compound integration of micro and nano structures can have the potential to become a multi-function optical element and will be applied in LCD and LED light extraction industries.
In this thesis, we would utilize two-beam interference lithography to define the sub-wavelength structures (SWS), and use the mechanism of reducing etching mask to easily fabricate taper-shaped SWS on a SiO2 substrate in a reactive ion etching (RIE) system. In addition, we would fabricate micro structures on a Si substrate by utilizing photolithography and inductive couple plasma (ICP) etching. After that, we would use these two-scale micro/nano molds to fabricate compound eye structures on a flexible substrate. Then we transferred SWS from the flat surfaces to the curved surfaces of micro lens arrays by combining nanoimprint and hot-extrusion technique. Thus it is a very simple and reproducible method to fabricate artificial compound eye structures. Furthermore, we would measure the reflectivity of a single micro lens to confirm the effect of anti-reflection by utilizing our homemade reflectometer. Finally, we would transfer the compound structures from the flexible substrate to the millimeter hemisphere of an LGP by utilizing hot-embossing process. Then we would measure the transmittance and diffusibility of an LGP with compound structures by utilizing a CCD camera and an integrating sphere, respectively. The measurement results show that the multi-function optical element has potential to be applied in back light units. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:09:04Z (GMT). No. of bitstreams: 1 ntu-99-R97941084-1.pdf: 18130666 bytes, checksum: d9fe4c9ea16548c8f356d048ef8c68ef (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
摘要 I Abstract III Statement of Contributions V Contents VI List of Figures VIII List of Acronyms XIII Chapter 1. Motivation and Introduction 1 1-1 Motivation 1 1-2 Anti-Reflection Characteristics 7 1-2-1 Traditional Thin Film AR Coating 7 1-2-2 Sub-Wavelength Structures 8 1-3 Diffusion Characteristics of Micro Lens arrays 14 1-4 Fabrication of Compound Structures 17 1-5 Organization of this thesis 22 Chapter 2. Fabrication of Micro/Nano Molds 24 2-1 Fabrication of SWS on a SiO2 substrate 24 2-1-1 ARC Thickness Design 25 2-1-2 Thin Film Thickness Control 30 2-1-3 Two Beam Interference Lithography System 32 2-1-4 Pattern Transfer by RIE 38 2-2 Fabrication of MLAs Si Mold 44 2-2-1 Design and Fabrication of MLAs photo-mask 47 2-2-2 Fabrication of Hexagonal Micro Holes Arrays on Silicon 50 2-2-3 Pattern Transfer by ICP-RIE 51 Chapter 3. Fabrication of SWS on Micro Lens Arrays and Application of the Compound Structures 54 3-1 Fabrication of Compound Structures on a Flexible Substrate 55 3-1-1 Fabrication of the SWS on a PC Film 55 3-1-2 Fabricated Compound Structures by Extrusive Micro-Curved Shaping Method 59 3-2 Application of the Compound Structures to an LGP 66 Chapter 4. Measurement Results of Anti-Reflection and Diffusion Properties 74 4-1 The Measurement Results of the Compound Structures on a PC Film 74 4-1-1 Anti-Reflective Phenomenon on a PC Film with SWS 74 4-1-2 Anti-Reflective Phenomenon on a Single Micro Lens with SWS 78 4-1-3 Diffusion Effect of the Compound Structures on a PC Film 83 4-2 The Measurement Results of the LGP with Compound Structures 86 Chapter 5. Conclusions and Future work 91 5-1 Conclusions 91 5-2 Future work 94 References 95 | |
| dc.language.iso | en | |
| dc.subject | 干涉微影 | zh_TW |
| dc.subject | 次波長結構 | zh_TW |
| dc.subject | 微透鏡陣列 | zh_TW |
| dc.subject | 複眼 | zh_TW |
| dc.subject | 奈米壓印 | zh_TW |
| dc.subject | compound eye | en |
| dc.subject | Sub-wavelength structure | en |
| dc.subject | micro lens arrays | en |
| dc.subject | interference lithography | en |
| dc.subject | nanoimprint | en |
| dc.title | 具有抗反射與擴散功能之多尺度微透鏡陣列的製作與量測 | zh_TW |
| dc.title | Fabrication and Characterization of Multi-Scale Micro Lens Arrays with Anti-reflection and Diffusion Properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林清富(Ching-Fuh Lin),陳學禮(Hsuen-Li Chen),魏茂國(Mao-Kuo Wei) | |
| dc.subject.keyword | 次波長結構,微透鏡陣列,複眼,奈米壓印,干涉微影, | zh_TW |
| dc.subject.keyword | Sub-wavelength structure,micro lens arrays,compound eye,nanoimprint,interference lithography, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-10-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 17.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
