請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48683完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇侃 | |
| dc.contributor.author | "Chen, Hung-Mao" | en |
| dc.contributor.author | 陳宏茂 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:08:16Z | - |
| dc.date.available | 2012-11-15 | |
| dc.date.copyright | 2010-11-15 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-11-04 | |
| dc.identifier.citation | 1.E.Rabinowicz, Friction and wear of materials (2nd edition), John Wiley & Sons, Inc., New York,1995.
2.J.F.Archard, Single contacts and multiple encounters, Journal of Applied Physics,v24,p1420-1425,1961. 3.N.P.Suh, The delamination theory of wear, Wear,v25,p111-124, 1973. 4.D.A.Rigney, The roles of hardness in the sliding behavior of material, Wear,v175,p63-69,1994. 5.T.F.J.Quinn, Review of oxidation Part I:The origins of oxidational wear,Tribology International v16,No.5, p257-271,1983. 6.T.F.J.Quinn, Oxidation wear modeling:I,Wear,v153,p179- 200,1992. 7.T.F.J.Quinn, Oxidation wear modeling:PartII:The general theory of oxidational wear, Wear,v175,p199-208,1994. 8.T.F.J.Quinn, Oxidation wear modeling:PartIII:The effect of speed and elevated temperatures ,Wear,v216, p262-275,1998. 9.T.F.J.Quinn, Computational methods applied to oxidational wear,Wear, v199,p169-180,1995. 10.T.F.J.Quinn, The oxidation wear of low alloy steels, Tribology International,v35,p691-715,2002. 11.H.So, The mechanism of oxidational wear, Wear,v184,p 161-167,1995. 12.H. So, D.S. Yu and C.Y. Chuang, Formation and wear mechanism of tribo-oxides and the regime of oxidational wear of steel, Wear,v253,p1004–1015,2002. 13.H.So, Characteristics of wear results tested by pin-on-disc at moderate to high speeds. Tribology International,v29, p415–423,1996. 14.Subrata Bhattacharyya, Wear and friction in steel,aluminum And magnesium alloys, Wear,v61,p133-141,1980. 15.S.C.Lim,M.F.Ashby, Wear-mechanism maps, Acta metal,v35, No.1,p1-24,1987. 16.M.F.Ashby,S.C.Lim, Wear-mechanism maps, Scripta Metallurgica et Materialia,v24,p805-810,1990. 17.S.C.Lim, The relevance of wear -mechanism maps to mild- oxidational wear, Tribology International,v35,p717-723,2002. 18.H.So,D.S.Yu and C.Y.Chuang, Formation and wear mechanism of tribo- oxides and the regime of oxidation -al wear of steel, Wear,v253,p 1004-1015,2002. 19.I.A. Inman, S.R. Rose and P.K. Datta, Development of a simple ‘temperature versus sliding speed’ wear map for the sliding wear behavior of dissimilar metallic interfaces, Wear,v260, p919–932,2006. 20.W.M. Rainforth, A.J. Leonard, C. Perrin, A. Bedolla-Jacuinde, Y. Wang, H. Jones and Q. Luo, High resolution observations of friction-induced oxide and its interaction with the worn surface, Tribology International,v35,p731–748,2002. 21.F.H.Stott, The role of oxidation in the wear of alloys, Tribology International,v31,p61-71,1998. 22.F.H.Stott. High-temperature sliding wear of metals, Tribology International,v35,p489-495,2002. 23.H.A.Abdel-Aal, A remark on the flash temperature theory, Int. Comm. Heat Mass Tranfer,v24,p241-250,1997. 24.H.Blok , Surface temperature under extreme pressure lubricating conditions, Proc. Second World Petroleum Cong.,v3, p471–486,1937. 25.J.C.Jaeger, Moving sources of heat and the temperatures at sliding contacts, Proc. Roy. Soc.,NSW26,p203–224,1942. 26.J.R.Barber, Distribution of heat between sliding surfaces, J. Mech. Eng. Sci.,v9,p351–354,1967. 27.J.F.Archard, The temperature of rubbing surfaces, Wear,v2,p 438–455,1958/59. 28.C.B. Allen, T.F.J. Quinn and J.L. Sullivan , The oxidational wear of high-chromium ferritic steel on austenitic stainless steel, ASME Trans.J.Tribol.,v108,p172–179,1986. 29.D.M. Rowson and T.F.J. Quinn , Frictional heating and the oxidational wear theory, J. Phys. D: Appl. Phys.,v13, p209–219,1980. 30.T.F.J.Quinn and W.O.Winer, The thermal aspects of oxidational wear.Wear,v102,p67–80,1985. 31.F.P.Bowden, D.Tabor, The Friction and Lubrication of Solids, Oxford Univ Press: Clarendon Press, Oxford,1950. 32.J.S.McFarlane, D.Tabor, Relation between friction and adhesion, Proceedings of the Royal Society of London, Series A, v202, n1069, p244-253,1950. 33.D.Tabor, Junction Growth in metallic friction: The role of combined stresses and surface contamination. Proceedings of the Royal Society of London, Series A,v251,n1266,p378-393,1959. 34.A.P.Green, The plastic yielding of metal junctions due to combined shear and pressure, Journal of the Mechanics and Physics of Solids,v2,p197-211,1954. 35.A.P.Green, Friction between unlubricated metals: A theoretical analysis of the junction model, Proceedings of the Royal Society of London, Series A, v228, n1173, p191-204,1955. 36.H.Dreshcher, The mechanics of friction between solid bodies, VD1-Z,v101,p697,1959. 37.D.F.Moore, Principles and Applications of Tribology, Pergamon Press, Oxford, New York,1975. 38.J.M.Challen, P.L.B. Oxley, An explanation of the different regimes of friction and wear using asperity deformation models, Wear,v53,p229-243,1979. 39.陳立偉,鋼材擠出磨耗,國立台灣大學碩士論文(93). 40.張錫綸, 鋼鐵材料選用手冊,科技圖書股份有限公司. 41.陳建同, 經雷射處理後之金屬表面之磨耗機構研究, 國立台灣大學碩士論文(81). 42.E.R.G Eckert,R.M. Drake, Heat and Mass Transfer(2nd edition), McGraw-Hill, New York,1959. 43.H.Blok, Surface temperature under extreme pressure lubricating conditions. In: Proc. Second World Petr. Cong,v3,p 471–486,1937. 44.H.Block, Measurement of temperature flashes on gear teeth under extreme pressure conditions, In: Proc. Instn. Mech. Engrs, v2,p14–20,1937. 45.J.CJaeger, Moving sources of heat and the temperatures at sliding contacts, In:Proc.Roy.Soc,NSW.26,p203–224,1942. 46.J.R.Barber, Distribution of heat between sliding surfaces, J. Mech. Eng. Sci.,v9,p351–354,1967. 47.R. Holm, Temperature development in a heated contact with application to sliding contacts, Journal of Applied Mechanics, v19, p369-374,1952. 48.M.F. Ashby, J. Abulawi, H.S. Kong, Temperature maps for frictional heating in dry sliding, ASME Tribology Transactions,v34,n4, p577-587,1991. 49.陳宇宏, 擠出磨耗之塑性力學分析,國立台灣大學碩士論文(98). 50.Steel Heating and Tempering Colours Page, forging and hardening colours chart, Retrieved September 1,2008, from http://members.optushome.com.au/terrybrown/HeatTemperChartEtc.html 51.J.M.Challen, PH.D.Thesis, University of New South Wales, Australia,1978. 52.K.L.Johnson, Proc.7th Leeds-Lyon Symposium on Tribology,Leeds, Westbury House,1980. 53.E.H.Lee, B.W.Shaffer, Journal of Applied Mechanics,v18,p405-413, 1951. 54.W.Johnson, International Journal of Mechanical Sciences,v4, p323-347,1962. 55.E.Usui,K.Hoshi, Proc. Int. Production Engineering Research Conf., A.S.M.E.,Pittsburgh,p61-71,1963. 56.J.A.Greenwood,J.B.P Williamson, Contact of nominally flat surfaces, Proceedings of the Royal Society of London, Series A, v295,n1442,p300-318,1966. 57.J. F. Archard and W. Hirst, The Wear of Metals under Unlubricated Conditions, Mathematical and Physical Sciences,v236, No.1206, p397-410,1956. 58.陳宏茂,“不同表面處理模具鋼之磨耗機構比較”, 國立台灣大學碩士論文(83). 59.余東曉,“鋼材的氧化磨耗行為”,國立台灣大學碩士論文(90). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48683 | - |
| dc.description.abstract | 本文使用Falex摩擦試驗機,以中碳鋼S45C與模具鋼SKD11為材料進行銷盤磨耗試驗。當材料在高滑動速度及足夠高接觸壓力條件下對磨時,銷產生嚴重的磨耗。試驗中藉由觀察接觸面邊緣,發現薄層磨屑從滑動接觸的垂直方向被擠出;此時,另一部份以薄片磨屑型態沿滑動方向被擠出,一些堆積於銷的邊緣,一些磨屑形成火花噴出。此種現象不同於氧化、黏著、刮磨…等磨耗機構產生的結果,定義為擠出磨耗。
本文主要針對鋼的擠出磨耗與其轉換成氧化磨耗之磨耗過程及其顯微組織做分析及探討,再利用相關力學理論推導比較擠出磨耗量。 微觀分析中碳鋼/模具鋼銷結果顯示,在擠出過程中,銷接觸面周圍環繞擠出疊層,當疊層堆疊到一較大體積,其功用如散熱片,造成外觀接觸溫度下降,磨耗率跟著降低。此時,若外觀接觸溫度維持在600℃/700℃以上,銷仍可維持在擠出磨耗機制。若外觀接觸溫度下降至550℃以下,磨耗機制由擠出磨耗轉變成氧化磨耗。 顯微分析結果顯示,在擠出磨耗情況下,銷接觸表面軟化造成塑性層材料連續被擠出,試驗中無明顯氧化物,銷接觸面上很薄的氧化物主要為試驗停止後降溫所產生。而中碳鋼銷接近接觸面之金相組織為細波來鐵,細波來鐵下方存在粗大白色肥粒鐵組織,應該是在滑動過程中由麻田散鐵高溫回火(硬化銷)或再結晶之晶粒成長(軟銷)而成。模具鋼銷接近接觸面之組織,為未回火麻田散鐵基地內散佈顆粒狀碳化物及合金碳化物,而在未回火麻田散鐵下方距接觸面稍遠處,存在高溫回火麻田散鐵基地散佈碳化物組織。 中碳鋼銷經硬化處理後會增加擠出機制初始階段時滑動之摩擦力。而進入穩定擠出磨耗期後,因銷之真實接觸溫度通常大於900℃以上,此時的銷硬度軟化,其初始硬度不會影響穩定擠出磨耗時的硬度。因圓盤溫度較低,更新之接觸點硬度大於銷接觸點硬度很多,所以此時滑動剪力或摩擦力主要由銷的硬度決定。因此,經硬化及未經硬化處理之銷,其外觀接觸溫度以及摩擦係數幾乎相同。 不管銷的磨耗量之實驗值或理論值,其皆隨負載及相對滑動速度增加而增加,符合整個擠出磨耗趨勢。銷磨耗量之實驗值大於理論值,差距在1.7~5.5倍之間,應為其他因素所影響,若經適當修正,便可證實採用塑性力學分析擠出磨耗為一可行方向。 | zh_TW |
| dc.description.abstract | A Falex machine was used to perform the pin-on-disk wear tests. Two kinds of steel which included medium carbon steel and die steel were used. When sliding contact was under sufficiently high pressures and speeds, the pin wear became severe. By observing the edge of the contact interface during a test, we found that thin layers of debris were extruded out from the contact in the direction perpendicular to that of sliding. At the same time, flakes of debris were extruded from the contact in the sliding direction. Some of them piled up at the periphery of the pin, the rest formed sparks. Such phenomena are different from those resulting from oxidation, adhesive and abrasive wear mechanisms. The mechanism of this kind is now termed as extrusion wear.
This study investigated extrusion wear mechanisms and transition of wear mechanisms of steel by micro-analyzing the wear surfaces and using mechanics of plasticity to evaluate and compare the real values and theoretical values of pin wear. Micro-analysis of medium carbon steel/ die steel pin shows that many extruded laminated layers were around the rim of the pins in the extrusion process. When these laminated layers accumulated to a bigger volume, they functioned as cooling fins. The contact temperature began to decrease and approached equilibrium. In this scenario, wear rate also decreased. However, the nominal contact temperature was maintained at over 600℃/700℃ in an extrusion wear regime. If the nominal contact temperature decreased to <550 °C, the wear regime changed to an oxidation one, and the extrusion process stopped immediately. In an extrusion wear condition, micro-analysis shows that layers of material were extruded continuously due to softening of the contact surface of the pin. Under such a condition, oxide films of negligible thickness formed during cooling in air after the wear test. The microstructure immediately close to the contact surface of medium carbon steel pin was fine pearlite, which was transformed from austenite at the end of the wear test. Below the fine pearlite zone, a coarse ferrite structure existed that resulted from martensite tempering (for hardened pins) or grain growth at a recrystallization temperature (for as-fabricated pins) during the sliding process. The microstructure close to the contact surface of a die steel pin was spheroidized carbide and main alloy carbide dispersed in untempered martensite base. Additionally, there were carbides dispersed in the tempered martensite base below untempered martensite. The hardening treatment of pins may influence friction and contact temperatures during the initial extrusion wear stage. When the contact reached a stable extrusion wear period, the real contact temperature usually exceeded 900 °C. In such conditions, the initial hardness of the pins did not affect the hardness of the contact surfaces in stable extrusion wear when running conditions were the same. Additionally, as the nominal contact temperature of the disc was lower than that of the pin, the sliding shear force or frictional force was mainly determined with the pin hardness. Therefore, the contact temperatures and friction coefficients for different heat-treated pins were almost the same. The real values or theoretical values of pin wear increase with normal load and sliding speed increasing, such a condition is consistent with the trend of extrusion wear. The results show that the real values of wear are of 1.7 to 5.5 times greater than the theoretical values. This inconsistency should be caused by some facts that were neglected in calculation. If the influent factors are modified appropriately, it will indicate that the plastic analysis is a feasible method to analyze the behavior of extrusion wear. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:08:16Z (GMT). No. of bitstreams: 1 ntu-99-D92522005-1.pdf: 6554233 bytes, checksum: f491956857fd070918ab3d710bb2bb19 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III 英文摘要 V 目錄 VIII 表目錄 XII 圖目錄 XII 符號說明 XVIII 第一章緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-3 磨耗機構介紹 6 1-3-1 黏著磨耗(adhesive wear) 6 1-3-2 刮磨磨耗(abrasive wear) 6 1-3-3氧化磨耗(oxidational wear) 7 1-3-4剝層磨耗(delamination wear) 7 1-3-5微振磨耗 7 1-3-6 擠出磨耗介紹 8 1-4論文架構 8 第二章 實驗設備與方法 9 2-1實驗規劃 9 2-2試片處理 9 2-2-1試片加工尺寸 9 2-2-2試片熱處理 10 2-3實驗設備 10 2-4實驗步驟 11 第三章 數據量測與微觀分析 13 3-1數據量測 13 3-1-1負載 13 3-1-2 轉速 13 3-1-3摩擦係數 14 3-1-4磨耗率 14 3-2 接觸溫度計算 15 3-2-1外觀接觸面平均溫度 15 3-2-2真實接觸溫度 16 3-3 外觀及微觀分析 17 3-3-1 數位相機外觀拍攝 17 3-3-2光學顯微鏡分析 17 3-3-3掃描式電子顯微鏡(SEM)分析 18 3-3-4 X-ray繞射(XRD)試驗分析 18 3-3-5 能量散佈分析儀(EDS)試驗分析 18 第四章 結果與討論 20 4-1中碳鋼實驗現象的觀察與數據分析 20 4-1-1實驗現象的觀察與數據分析 20 4-1-2 氧化磨耗轉變成擠出磨耗4種磨耗型態 22 4-1-3 不同硬度中碳鋼擠出磨耗之比較 23 4-1-4 中碳鋼實驗現象討論 24 4-2模具鋼實驗現象的觀察與數據分析 25 4-2-1實驗現象的觀察與數據分析 25 4-2-2模具鋼氧化磨耗與擠出磨耗之轉變型態 27 4-2-3模具鋼實驗現象討論 28 4-3 顯微分析中碳鋼擠出磨耗與磨耗機制之轉換 29 4-3-1中碳鋼擠出磨耗機制 29 4-3-2 中碳鋼擠出磨耗與氧化磨耗機制之轉換 30 4-3-3中碳鋼顯微分析討論 31 4-4 顯微分析模具鋼擠出磨耗與氧化磨耗機制之轉換 32 4-4-1 未硬化模具鋼擠出磨耗與氧化磨耗機制之轉換 32 4-4-2 硬化模具鋼擠出磨耗與氧化磨耗機制之轉換 33 4-4-3 模具鋼顯微分析討論 34 4-5 討論 35 4-5-1擠出磨耗接觸溫度探討 35 4-5-2 磨屑觀察及組織 35 4-5-3氧化物觀察 36 第五章 擠出磨耗相關力學理論 37 5-1相關力學模型 37 5-1-1波浪式變形(wave formation) 37 5-1-2塑變波形的移除(wave removal) 38 5-1-3切削(cutting) 39 5-2 擠出磨耗之力學模型 40 5-2-1接觸面之力學分析 41 5-3 擠出量計算 43 5-4 磨耗量實驗值與理論值之比較 44 5-4-1磨耗量實驗值 44 5-4-2磨耗量理論值 45 5-4-3磨耗量實驗值與理論值之比較與討論 46 第六章 結論與建議 48 6-1結論 48 6-2建議 50 參考文獻 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 顯微分析 | zh_TW |
| dc.subject | 擠出磨耗 | zh_TW |
| dc.subject | 氧化磨耗 | zh_TW |
| dc.subject | 銷盤 | zh_TW |
| dc.subject | 塑性 | zh_TW |
| dc.subject | micro-analysis | en |
| dc.subject | extrusion wear | en |
| dc.subject | oxidational wear | en |
| dc.subject | pin-on-disk | en |
| dc.subject | plasticity | en |
| dc.title | 鋼材之擠出磨耗機制與理論之探討 | zh_TW |
| dc.title | The Mechanisms and Relevant Theories of Extrusion Wear of Steel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 單秋成 | |
| dc.contributor.oralexamcommittee | 雷添壽,林原慶,黃仁清,胡致中 | |
| dc.subject.keyword | 擠出磨耗,氧化磨耗,銷盤,塑性,顯微分析, | zh_TW |
| dc.subject.keyword | extrusion wear,oxidational wear,pin-on-disk,plasticity,micro-analysis, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-11-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
