Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48678
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 賀培銘 | |
dc.contributor.author | Shang-Yu Wu | en |
dc.contributor.author | 吳尚育 | zh_TW |
dc.date.accessioned | 2021-06-15T07:08:00Z | - |
dc.date.available | 2010-12-10 | |
dc.date.copyright | 2010-12-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-11-13 | |
dc.identifier.citation | References
[1] J. Polchinski, “String Theory. Vol. 1: An Introduction to the Bosonic String.” Cambridge, UK: Univ. Pr. (1998) 402 p. J. Polchinski, “String Theory. Vol. 2: Superstring Theory and Beyond.” Cambridge, UK: Univ. Pr. (1998) 531 p. M. B. Green, J. H. Schwarz, and E. Witten, “Superstring Theory. Vol. 1: Introduction.” Cambridge, Uk: Univ. Pr. (1987) 469 P. (Cambridge Monographs On Mathematical Physics). M. B. Green, J. H. Schwarz, and E. Witten, “Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology.” Cambridge, Uk: Univ. Pr. (1987) 596 P. (Cambridge Monographs On Mathematical Physics). K. Becker, M. Becker, and J. H. Schwarz, “String Theory and M-Theory: A Modern Introduction.” Cambridge, UK: Cambridge Univ. Pr. (2007) 739 p. C. V. Johnson, “D-branes.” Cambridge, USA: Univ. Pr. (2003) 548 p. [2] E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B 443, 85 (1995) [arXiv:hep-th/9503124]. [3] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]. [4] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150]. [5] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109]. [6] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111]. [7] J. Erdmenger and H. Osborn, “Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions,” Nucl. Phys. B 483, 431 (1997) [arXiv:hepth/ 9605009]. [8] L. Susskind, “The World As A Hologram,” J. Math. Phys. 36, 6377 (1995) [arXiv:hepth/ 9409089]. [9] G. ’t Hooft, “Dimensional reduction in quantum gravity,” arXiv:gr-qc/9310026. [10] G. T. Horowitz and A. Strominger, “Black strings and P-branes,” Nucl. Phys. B 360, 197 (1991). [11] J. Dai, R. G. Leigh and J. Polchinski, “New Connections Between String Theories,” Mod. Phys. Lett. A 4, 2073 (1989). [12] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017]. [13] J. Polchinski, S. Chaudhuri and C. V. Johnson, “Notes on D-Branes,” arXiv:hep-th/9602052. [14] C. V. Johnson, “D-brane primer,” arXiv:hep-th/0007170. [15] I. R. Klebanov, “World-volume approach to absorption by non-dilatonic branes,” Nucl. Phys. B 496, 231 (1997) [arXiv:hep-th/9702076]. [16] S. S. Gubser, I. R. Klebanov and A. A. Tseytlin, “String theory and classical absorption by three-branes,” Nucl. Phys. B 499, 217 (1997) [arXiv:hep-th/9703040]. [17] A. A. Tseytlin, “On non-abelian generalisation of the Born-Infeld action in string theory,” Nucl. Phys. B 501, 41 (1997) [arXiv:hep-th/9701125]. [18] R. C. Myers, “Dielectric-branes,” JHEP 9912, 022 (1999) [arXiv:hep-th/9910053]. [19] M. Henningson and K. Skenderis, “The holographic Weyl anomaly,” JHEP 9807, 023 (1998) [arXiv:hep-th/9806087]. [20] S. de Haro, S. N. Solodukhin and K. Skenderis, “Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence,” Commun. Math. Phys. 217, 595 (2001) [arXiv:hep-th/0002230]. [21] M. Bianchi, D. Z. Freedman and K. Skenderis, “Holographic Renormalization,” Nucl. Phys. B 631, 159 (2002) [arXiv:hep-th/0112119]. [22] K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19, 5849 (2002) [arXiv:hep-th/0209067]. [23] L. Susskind and E. Witten, “The holographic bound in anti-de Sitter space,” arXiv:hepth/ 9805114. [24] A. W. Peet and J. Polchinski, “UV/IR relations in AdS dynamics,” Phys. Rev. D 59, 065011 (1999) [arXiv:hep-th/9809022]. [25] V. Balasubramanian and P. Kraus, “Spacetime and the holographic renormalization group,” Phys. Rev. Lett. 83, 3605 (1999) [arXiv:hep-th/9903190]. [26] J. de Boer, E. P. Verlinde and H. L. Verlinde, “On the holographic renormalization group,” JHEP 0008, 003 (2000) [arXiv:hep-th/9912012]. [27] I. R. Klebanov and E. Witten, “AdS/CFT correspondence and symmetry breaking,” Nucl. Phys. B 556, 89 (1999) [arXiv:hep-th/9905104]. [28] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131]. [29] S. W. Hawking and D. N. Page, “Thermodynamics Of Black Holes In Anti-De Sitter Space,” Commun. Math. Phys. 87, 577 (1983). [30] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, “Charged AdS black holes and catastrophic holography,” Phys. Rev. D 60, 064018 (1999) [arXiv:hep-th/9902170]. [31] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, “Holography, thermodynamics and fluctuations of charged AdS black holes,” Phys. Rev. D 60, 104026 (1999) [arXiv:hepth/ 9904197]. [32] J. G. Russo, “New compactifications of supergravities and large N QCD,” Nucl. Phys. B 543, 183 (1999) [arXiv:hep-th/9808117]. [33] C. Csaki, Y. Oz, J. Russo and J. Terning, “Large N QCD from rotating branes,” Phys. Rev. D 59, 065012 (1999) [arXiv:hep-th/9810186]. [34] P. Kraus, F. Larsen and S. P. Trivedi, “The Coulomb branch of gauge theory from rotating branes,” JHEP 9903, 003 (1999) [arXiv:hep-th/9811120]. [35] J. G. Russo and K. Sfetsos, “Rotating D3 branes and QCD in three dimensions,” Adv. Theor. Math. Phys. 3, 131 (1999) [arXiv:hep-th/9901056]. [36] A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on branes with boundaries,” JHEP 0106, 063 (2001) [arXiv:hep-th/0105132]. [37] A. Karch and E. Katz, “Adding flavor to AdS/CFT,” JHEP 0206, 043 (2002) [arXiv:hepth/ 0205236]. [38] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, “Meson spectroscopy in AdS/CFT with flavour,” JHEP 0307, 049 (2003) [arXiv:hep-th/0304032]. [39] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, “Towards a holographic dual of large-N(c) QCD,” JHEP 0405, 041 (2004) [arXiv:hep-th/0311270]. [40] T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD,” Prog. Theor. Phys. 113, 843 (2005) [arXiv:hep-th/0412141]. [41] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik and I. Kirsch, “Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals,” Phys. Rev. D 69, 066007 (2004) [arXiv:hep-th/0306018]. [42] I. Kirsch, “Generalizations of the AdS/CFT correspondence,” Fortsch. Phys. 52, 727 (2004) [arXiv:hep-th/0406274]. [43] D. Mateos, R. C. Myers and R. M. Thomson, “Holographic phase transitions with fundamental matter,” Phys. Rev. Lett. 97, 091601 (2006) [arXiv:hep-th/0605046]. [44] D. Mateos, R. C. Myers and R. M. Thomson, “Thermodynamics of the brane,” JHEP 0705, 067 (2007) [arXiv:hep-th/0701132]. [45] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers and R. M. Thomson, “Holographic phase transitions at finite baryon density,” JHEP 0702, 016 (2007) [arXiv:hep-th/0611099]. [46] T. Sakai and S. Sugimoto, “More on a holographic dual of QCD,” Prog. Theor. Phys. 114, 1083 (2005) [arXiv:hep-th/0507073]. [47] S. Sugimoto and K. Takahashi, “QED and string theory,” JHEP 0404, 051 (2004) [arXiv:hepth/ 0403247]. [48] O. Bergman, S. Seki and J. Sonnenschein, “Quark mass and condensate in HQCD,” JHEP 0712, 037 (2007) [arXiv:0708.2839 [hep-th]]. [49] A. Dhar and P. Nag, “Sakai-Sugimoto model, Tachyon Condensation and Chiral symmetry Breaking,” JHEP 0801, 055 (2008) [arXiv:0708.3233 [hep-th]]. [50] O. Aharony and D. Kutasov, “Holographic Duals of Long Open Strings,” Phys. Rev. D 78, 026005 (2008) [arXiv:0803.3547 [hep-th]]. [51] K. Hashimoto, T. Hirayama, F. L. Lin and H. U. Yee, “Quark Mass Deformation of Holographic Massless QCD,” JHEP 0807, 089 (2008) [arXiv:0803.4192 [hep-th]]. [52] A. Dhar and P. Nag, “Tachyon condensation and quark mass in modified Sakai-Sugimoto model,” Phys. Rev. D 78, 066021 (2008) [arXiv:0804.4807 [hep-th]]. [53] M. Kruczenski, L. A. P. Zayas, J. Sonnenschein and D. Vaman, “Regge trajectories for mesons in the holographic dual of large-N(c) QCD,” JHEP 0506, 046 (2005) [arXiv:hep-th/0410035]. [54] O. Aharony, J. Sonnenschein and S. Yankielowicz, “A holographic model of deconfinement and chiral symmetry restoration,” Annals Phys. 322: 1420 (2007), hep-th/0604161. [55] E. Witten, “Baryons and branes in anti de Sitter space,” JHEP 9807, 006 (1998) [arXiv:hepth/ 9805112]. [56] D. J. Gross and H. Ooguri, “Aspects of large N gauge theory dynamics as seen by string theory,” Phys. Rev. D 58, 106002 (1998) [arXiv:hep-th/9805129]. [57] A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, “Baryons from supergravity,” JHEP 9807, 020 (1998) [arXiv:hep-th/9806158]. [58] K. Peeters, J. Sonnenschein and M. Zamaklar, “Holographic melting and related properties of mesons in a quark gluon plasma,” Phys. Rev. D 74, 106008 (2006) [arXiv:hep-th/0606195]. [59] O. Bergman, G. Lifschytz and M. Lippert, “Holographic Nuclear Physics,” JHEP 0711, 056 (2007) [arXiv:0708.0326 [hep-th]]. [60] N. Horigome and Y. Tanii, “Holographic chiral phase transition with chemical potential,” JHEP 0701, 072 (2007) [arXiv:hep-th/0608198]. [61] A. A. Belavin, A. M. Polyakov, A. Schwartz and Y. Tyupkin, “Pseudoparticle solutions of the Yang-Mills equations,” Phys. Lett. 59 B: 85 (1975). [62] G. ’t Hooft, “Symmetry breaking through Bell-Jackiw anomalies,” Phys. Rev. Lett. 37: 8 (1976); “Computation of the quantum effects due to a four-dimensional pseudoparticle,” Phys. Rev. D 14: 3432 (1976). [63] A. De Rujula, H. Georgi and S. L. Glashow, “Hadron Masses In A Gauge Theory,” Phys. Rev. D 12, 147 (1975). [64] E. Witten, “Instantons, The Quark Model, And The 1/N Expansion,” Nucl. Phys. B 149, 285 (1979). [65] M. L¨uscher, “ The secret long range force In quantum field theories with instantons”, Phys. Lett. B 78: 465 (1978). [66] S. R. Coleman, “More about the massive Schwinger model,” Annals Phys. 101: 239 (1976). [67] E. Seiler, “Some more remarks on the Witten-Veneziano formula for the eta’ mass,” Phys. Lett. B 525: 355 (2002). [68] G. Dvali, “Three-form gauging of axion symmetries and gravity,” arXiv:hep-th/0507215. [69] E. Witten, “Theta dependence in the large N limit of four-dimensional gauge theories,” Phys. Rev. Lett. 81, 2862 (1998) [arXiv:hep-th/9807109]. [70] I. Horvath et al., “Low-dimensional long-range topological charge structure in the QCD vacuum,” Phys. Rev. D 68, 114505 (2003) [arXiv:hep-lat/0302009]. [71] H. B. Thacker, “D-branes, Wilson bags, and coherent topological charge structure in QCD,” PoS LAT2006, 025 (2006) [arXiv:hep-lat/0610049]. [72] O. Bergman and G. Lifschytz, “Holographic U(1)A and string creation,” JHEP 0704: 043 (2007), hep-th/0612289. [73] I. R. Klebanov, D. Kutasov and A. Murugan, “Entanglement as a Probe of Confinement,” Nucl. Phys. B 796: 274 (2008) arXiv:0709.2140 [hep-th]. [74] R. H. Brandenberger and C. Vafa, “Superstrings in the Early Universe,” Nucl. Phys. B 316: 391 (1989). N. Deo, S. Jain and C. I. Tan, “String Statistical Mechanics Above Hagedorn Energy Density,” Phys. Rev. D 40, 2626 (1989). S. A. Abel, J. L. F. Barbon, I. I. Kogan and E. Rabinovici, “String thermodynamics in D-brane backgrounds,” JHEP 9904, 015 (1999) [arXiv:hep-th/9902058]. A. Nayeri, R. H. Brandenberger and C. Vafa, “Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology,” Phys. Rev. Lett. 97: 021302 (2006) hep-th/0511140. [75] F. L. Lin, T. Matsuo and D. Tomino, “Hagedorn Strings and Correspondence Principle in AdS(3),” JHEP 0709: 042 (2007), arXiv:0705.4514 [hep-th]. [76] For a review, see T. Schafer, “Quark matter,” hep-ph/0304281; M. G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, “Color superconductivity in dense quark matter,” arXiv:0709.4635 [hep-ph]. [77] For a review, see Q. Chen, J. Stajicb, S. Tan, and K. Levin, ”BCS-BEC crossover: From high temperature superconductors to ultracold superfluids”, Phys. Rep. 412 :1-88 (2005), condmat/ 0404274v3. [78] D. T. Son, “Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry,” Phys. Rev. D 78, 046003 (2008) arXiv:0804.3972 [hep-th]. [79] K. Balasubramanian and J. McGreevy, “Gravity duals for non-relativistic CFTs,” Phys. Rev. Lett. 101, 061601 (2008) arXiv:0804.4053 [hep-th]. [80] Y. Nishida and D. T. Son, “Nonrelativistic conformal field theories,” Phys. Rev. D 76, 086004 (2007) [arXiv:0706.3746 [hep-th]]. [81] C. P. Herzog, M. Rangamani and S. F. Ross, “Heating up Galilean holography,” JHEP 0811, 080 (2008) arXiv:0807.1099 [hep-th]. [82] A. Adams, K. Balasubramanian and J. McGreevy, “Hot Spacetimes for Cold Atoms,” JHEP 0811, 080 (2008) arXiv:0807.1111 [hep-th]. [83] J. Maldacena, D. Martelli and Y. Tachikawa, “Comments on string theory backgrounds with non-relativistic conformal symmetry,” JHEP 0810, 072 (2008) arXiv:0807.1100 [hep-th]. [84] J. L. Petersen, “Introduction to the Maldacena conjecture on AdS/CFT,” Int. J. Mod. Phys. A 14, 3597 (1999) [arXiv:hep-th/9902131]. [85] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity,” Commun. Math. Phys. 208, 413 (1999) [arXiv:hep-th/9902121]. [86] K. Kuchar, “Gravitation, Geometry, And Nonrelativistic Quantum Theory,” Phys. Rev. D 22, 1285 (1980). [87] C. Duval, G. Burdet, H. P. Kunzle and M. Perrin, “Bargmann Structures And Newton-Cartan Theory,” Phys. Rev. D 31, 1841 (1985). [88] C. Duval, G. W. Gibbons and P. Horvathy, “Celestial Mechanics, Conformal Structures, and Gravitational Waves,” Phys. Rev. D 43, 3907 (1991) [arXiv:hep-th/0512188]. [89] C. Duval, M. Hassaine and P. A. Horvathy, “The geometry of Schr´odinger symmetry in gravity background/non-relativistic CFT,” Annals Phys. 324, 1158 (2009) [arXiv:0809.3128 [hep-th]]. [90] B. Julia and H. Nicolai, “Null Killing vector dimensional reduction and Galilean geometrodynamics,” Nucl. Phys. B 439, 291 (1995) [arXiv:hep-th/9412002]. [91] J. T. Liu, L. A. Pando Zayas and D. Vaman, “On horizons and plane waves,” Class. Quant. Grav. 20, 4343 (2003) [arXiv:hep-th/0301187]. [92] V. E. Hubeny and M. Rangamani, “No horizons in pp-waves,” JHEP 0211, 021 (2002) [arXiv:hep-th/0210234]. V. E. Hubeny and M. Rangamani, “Horizons and plane waves: A review,” Mod. Phys. Lett. A 18, 2699 (2003) [arXiv:hep-th/0311053]. [93] G. Policastro, D. T. Son and A. O. Starinets, “The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma,” Phys. Rev. Lett. 87, 081601 (2001) [arXiv:hep-th/0104066]. [94] P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics,” Phys. Rev. Lett. 94 (2005) 111601 [arXiv:hep-th/0405231]. [95] D. T. Son and A. O. Starinets, “Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002) [arXiv:hep-th/0205051]. [96] C. P. Herzog and D. T. Son, “Schwinger-Keldysh propagators from AdS/CFT correspondence,” JHEP 0303, 046 (2003) [arXiv:hep-th/0212072]. [97] N. Iqbal and H. Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009) [arXiv:0809.3808 [hep-th]]. [98] G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000) [arXiv:hep-th/9909056]. [99] P. K. Kovtun and A. O. Starinets, “Quasinormal modes and holography,” Phys. Rev. D 72, 086009 (2005) [arXiv:hep-th/0506184]. [100] G. Policastro, D. T. Son and A. O. Starinets, “From AdS/CFT correspondence to hydrodynamics,” JHEP 0209, 043 (2002) [arXiv:hep-th/0205052]. [101] D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum Field Theory,” Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [arXiv:0704.0240 [hep-th]]. [102] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009) [arXiv:0903.3246 [hep-th]]. [103] C. P. Herzog, “Lectures on Holographic Superfluidity and Superconductivity,” J. Phys. A 42, 343001 (2009) [arXiv:0904.1975 [hep-th]]. [104] J. McGreevy, “Holographic duality with a view toward many-body physics,” Adv. High Energy Phys. 2010, 723105 (2010) [arXiv:0909.0518 [hep-th]]. [105] G. T. Horowitz, “Introduction to Holographic Superconductors,” arXiv:1002.1722 [hep-th]. [106] S. Sachdev, “Condensed matter and AdS/CFT,” arXiv:1002.2947 [hep-th]. [107] S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78, 065034 (2008) [arXiv:0801.2977 [hep-th]]. [108] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Building a Holographic Superconductor,” Phys. Rev. Lett. 101, 031601 (2008) [arXiv:0803.3295 [hep-th]]. [109] H. Liu, J. McGreevy and D. Vegh, “Non-Fermi liquids from holography,” arXiv:0903.2477 [hep-th]. [110] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, “Emergent quantum criticality, Fermi surfaces, and AdS2,” arXiv:0907.2694 [hep-th]. [111] S. A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, “Towards strange metallic holography,” JHEP 1004, 120 (2010) [arXiv:0912.1061 [hep-th]]. [112] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, “From black holes to strange metals,” arXiv:1003.1728 [hep-th]. [113] E. Keski-Vakkuri and P. Kraus, “Quantum Hall Effect in AdS/CFT,” JHEP 0809, 130 (2008) [arXiv:0805.4643 [hep-th]]. [114] J. L. Davis, P. Kraus and A. Shah, “Gravity Dual of a Quantum Hall Plateau Transition,” JHEP 0811, 020 (2008) [arXiv:0809.1876 [hep-th]]. [115] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, “Quantum Hall Effect in a Holographic Model,” arXiv:1003.4965 [hep-th]. [116] M. Fujita, W. Li, S. Ryu and T. Takayanagi, “Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States, and Hierarchy,” JHEP 0906, 066 (2009) [arXiv:0901.0924 [hepth]]. [117] J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, “AC Transport at Holographic Quantum Hall Transitions,” JHEP 0911, 014 (2009) [arXiv:0905.4538 [hep-th]]. [118] A. Bayntun, C. P. Burgess, B. P. Dolan and S. S. Lee, “AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments,” arXiv:1008.1917 [hep-th]. [119] Y. Hikida, W. Li and T. Takayanagi, “ABJM with Flavors and FQHE,” JHEP 0907, 065 (2009) [arXiv:0903.2194 [hep-th]]. [120] S. Kachru, X. Liu and M. Mulligan, “Gravity Duals of Lifshitz-like Fixed Points,” Phys. Rev. D 78, 106005 (2008) [arXiv:0808.1725 [hep-th]]. [121] C. P. Herzog, P. Kovtun, S. Sachdev and D. T. Son, “Quantum critical transport, duality, and M-theory,” Phys. Rev. D 75, 085020 (2007) [arXiv:hep-th/0701036]. [122] A. Karch, “Electric-Magnetic Duality and Topological Insulators,” Phys. Rev. Lett. 103, 171601 (2009) [arXiv:0907.1528 [cond-mat.mes-hall]]. [123] S. Ryu and T. Takayanagi, “Topological Insulators and Superconductors from D-branes,” Phys. Lett. B 693, 175 (2010) [arXiv:1001.0763 [hep-th]]. [124] S. Ryu and T. Takayanagi, “Topological Insulators and Superconductors from String Theory,” arXiv:1007.4234 [hep-th]. [125] C. Hoyos-Badajoz, K. Jensen and A. Karch, “A Holographic Fractional Topological Insulator,” Phys. Rev. D 82, 086001 (2010) [arXiv:1007.3253 [hep-th]]. [126] A. Karch, J. Maciejko and T. Takayanagi, “Holographic fractional topological insulators in 2+1 and 1+1 dimensions,” arXiv:1009.2991 [hep-th]. [127] K. Jensen, A. Karch, D. T. Son and E. G. Thompson, “Holographic Berezinskii-Kosterlitz- Thouless Transitions,” Phys. Rev. Lett. 105, 041601 (2010) [arXiv:1002.3159 [hep-th]]. [128] N. Iqbal, H. Liu, M. Mezei and Q. Si, “Quantum phase transitions in holographic models of magnetism and superconductors,” Phys. Rev. D 82, 045002 (2010) [arXiv:1003.0010 [hep-th]]. [129] T. Faulkner, G. T. Horowitz and M. M. Roberts, “Holographic quantum criticality from multitrace deformations,” arXiv:1008.1581 [hep-th]. [130] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Holographic Superconductors,” JHEP 0812, 015 (2008) [arXiv:0810.1563 [hep-th]]. [131] G. T. Horowitz and M. M. Roberts, “Zero Temperature Limit of Holographic Superconductors,” JHEP 0911, 015 (2009) [arXiv:0908.3677 [hep-th]]. [132] J. W. Chen, Y. J. Kao and W. Y.Wen, “Peak-Dip-Hump from Holographic Superconductivity,” Phys. Rev. D 82, 026007 (2010) [arXiv:0911.2821 [hep-th]]. [133] T. Faulkner, G. T. Horowitz, J. McGreevy, M. M. Roberts and D. Vegh, “Photoemission ’experiments’ on holographic superconductors,” JHEP 1003, 121 (2010) [arXiv:0911.3402 [hepth]]. [134] S. S. Gubser and S. S. Pufu, “The gravity dual of a p-wave superconductor,” JHEP 0811, 033 (2008) [arXiv:0805.2960 [hep-th]]. [135] M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, “On Holographic p-wave Superfluids with Back-reaction,” Phys. Lett. B 686, 192 (2010) [arXiv:0912.3515 [hep-th]]. [136] J. W. Chen, Y. J. Kao, D. Maity, W. Y. Wen and C. P. Yeh, “Towards A Holographic Model of D-Wave Superconductors,” Phys. Rev. D 81, 106008 (2010) [arXiv:1003.2991 [hep-th]]. [137] C. P. Herzog, “An Analytic Holographic Superconductor,” Phys. Rev. D 81, 126009 (2010) [arXiv:1003.3278 [hep-th]]. [138] F. Benini, C. P. Herzog and A. Yarom, “Holographic Fermi arcs and a d-wave gap,” arXiv:1006.0731 [hep-th]. [139] F. Benini, C. P. Herzog, R. Rahman and A. Yarom, “Gauge gravity duality for d-wave superconductors: prospects and challenges,” arXiv:1007.1981 [hep-th]. [140] J. P. Gauntlett, J. Sonner and T. Wiseman, “Holographic superconductivity in M-Theory,” Phys. Rev. Lett. 103, 151601 (2009) [arXiv:0907.3796 [hep-th]]. [141] S. S. Gubser, C. P. Herzog, S. S. Pufu and T. Tesileanu, “Superconductors from Superstrings,” Phys. Rev. Lett. 103, 141601 (2009) [arXiv:0907.3510 [hep-th]]. [142] P. Breitenlohner and D. Z. Freedman, “Stability In Gauged Extended Supergravity,” Annals Phys. 144, 249 (1982). [143] K. Hashimoto, T. Hirayama, F. L. Lin and H. U. Yee, “Quark Mass Deformation of Holographic Massless QCD,” arXiv:0803.4192 [hep-th]. O. Aharony and D. Kutasov, “Holographic Duals of Long Open Strings,” arXiv:0803.3547 [hep-th]. [144] N. Horigome and Y. Tanii, “Holographic chiral phase transition with chemical potential,” JHEP 0701, 072 (2007) [arXiv:hep-th/0608198]. [145] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, “Baryons from instantons in holographic QCD,” Prog. Theor. Phys. 117, 1157 (2007) [arXiv:hep-th/0701280]. [146] D. K. Hong, M. Rho, H. U. Yee and P. Yi, “Dynamics of Baryons from String Theory and Vector Dominance,” JHEP 0709, 063 (2007) [arXiv:0705.2632 [hep-th]]. [147] K. Peeters, J. Sonnenschein and M. Zamaklar, “Holographic melting and related properties of mesons in a quark gluon plasma,” Phys. Rev. D 74, 106008 (2006) [arXiv:hep-th/0606195]. [148] D. Garfinkle, “Traveling waves in strongly gravitating cosmic strings,” Phys. Rev. D 41, 1112 (1990). [149] D. Garfinkle and T. Vachaspati, “Cosmic string traveling waves,” Phys. Rev. D 42, 1960 (1990). [150] V. E. Hubeny and M. Rangamani, “Generating asymptotically plane wave spacetimes,” JHEP 0301, 031 (2003) [arXiv:hep-th/0211206]. [151] S. R. Das, G. W. Gibbons and S. D. Mathur, “Universality of low energy absorption cross sections for black holes,” Phys. Rev. Lett. 78, 417 (1997) [arXiv:hep-th/9609052]. [152] A. Buchel and J. T. Liu, “Universality of the shear viscosity in supergravity,” Phys. Rev. Lett. 93, 090602 (2004) [arXiv:hep-th/0311175]. [153] S. Bhattacharyya et al., “Local Fluid Dynamical Entropy from Gravity,” JHEP 0806, 055 (2008) [arXiv:0803.2526 [hep-th]]. [154] R. Emparan, “Absorption of scalars by extended objects,” Nucl. Phys. B 516, 297 (1998) [arXiv:hep-th/9706204]. [155] P. Benincasa, A. Buchel and R. Naryshkin, “The shear viscosity of gauge theory plasma with chemical potentials,” Phys. Lett. B 645, 309 (2007) [arXiv:hep-th/0610145]. [156] A. Buchel and S. Cremonini, “Viscosity Bound and Causality in Superfluid Plasma,” arXiv:1007.2963 [hep-th]. [157] M. Natsuume and M. Ohta, “The shear viscosity of holographic superfluids,” arXiv:1008.4142 [hep-th]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48678 | - |
dc.description.abstract | In this work, we consider the various applications of the gauge/gravity correspondence which
is a powerful tool to study the strongly-coupled gauge theory. The topics we cover include the applications of the gauge/gravity correspondence on QCD, non-relativistic conformal field theory and the hydrodynamics. At first, we consider the introduction of topological charged membranes in an interesting holographic QCD model, namely Sakai-Sugimoto model. This study is motivated by the lattice simulations of QCD in which people find there are some topological domain wall structures. We find there are some thermodynamic favored and stable phases with the topological charged membrane structures. We find a crossover phase with the limiting baryonic current density and temperature which suggest a Hagedorn-like phase transition of meson dissociation. In addition to the crossover phase, we also find a rich phase structure. Next, we provide an alternative framework of non-relativistic holography. The motivation of studying the non-relativistic holography is to study the strongly-coupled fermionic systems at unitarity. The conventional approach of studying non-relativistic holographic is based on the solution generating technique, the so-called Null Melvin Twist. People obtain the asymptotic Schr¨odinger symmetry by deforming the usual AdS space. So the dual field theory only has the Schr¨odinger symmetry in the UV, but the same relativistic conformal symmetry in the IR. So it is not clear how the Schr¨odinger symmetry can be realized explicitly as the RG flow runs down toward IR. We try to preserve the Schr¨odinger symmetry from the UV to IR by using the so-called Bargmann framework which lift the Newton-Cartan gravity to the one-dimensional higher Einstein gravity. This framework naturally explains why the non-relativistic holography is co-dimension two. We also try to construct the black hole solution dual to the thermal non-relativistic CFT. However, due to a no-go theorem which presents that there is no regular horizon in the bulk if there is a covariant constant null-like Killing vector in the bulk, our black hole solution has a singular horizon. Although the singular horizon of our black hole, we still can get sensible thermodynamics by using the standard approaches. We also evaluate the shear viscosity and find it is zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero. The last application of the gauge/gravity correspondence we consider is the shear viscosity/ entropy ratio in the holographic superconductor. It is well-known that there is a universal bound for the shear viscosity/entropy ratio, i.e., η/s ≥ 1/4π for any strongly coupled gauge theory. However, the situations considered in the literature are all the cases without explicit phase transition. Thus, one may wonder if there is any signature on the shear viscosity/entropy ratio when there exists some phase transition. So we numerically check η/s in the s-wave holographic superconductor system and find the universal bound is also satisfied in the superconducting phase. However, we only check for a limited range in the huge parameter space. So we still need some rigorous proof on this universal bound in the superconduting phase. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:08:00Z (GMT). No. of bitstreams: 1 ntu-99-D95222010-1.pdf: 2352103 bytes, checksum: a00811eb7972984f6ea420eac9cae6c1 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Contents
1 Introduction 2 1.1 Basics of AdS/CFT Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Basics of conformal field theory and geometry of Anti de Sitter space . . . . . . 6 1.1.2 Maldacena conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1.3 The dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.1.4 Finite temperature and charge density . . . . . . . . . . . . . . . . . . . . . . . 20 1.1.5 Introducing flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2 Holographic QCD : Sakai-Sugimoto Model . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3 Non-relativistic holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.1 Algebra, symmetries and the correspondence . . . . . . . . . . . . . . . . . . . 32 1.3.2 String theory embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4 A brief introduction to the holographic superconductor . . . . . . . . . . . . . . . . . . 40 2 Topological domain walls in Sakai-Sugimoto model 44 2.1 Witten’s holographic construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2 Introducing charged membranes in Sakai-Sugimoto model . . . . . . . . . . . . . . . . 47 2.3 Confined phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 Deconfined phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Phase structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Real-time formulation and holographic hydrodynamics 64 3.1 Minkowski prescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3 The ratio of shear viscosity to entropy density . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 The ratio of shear viscosity to entropy density in the s-wave holographic superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Non-relativistic holography- Bargmann framework 73 4.1 The Bargmann lift framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1 Singular black hole solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.2 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3 The ratio of shear viscosity to entropy density . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Null Melvin Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Singular black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Summary and Conclusions 89 Reference 91 | |
dc.language.iso | en | |
dc.title | 規範/重力對應之探討 | zh_TW |
dc.title | Topic on gauge/gravity correspondence | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 林豐利 | |
dc.contributor.oralexamcommittee | 陳俊瑋,陳江梅,高賢忠 | |
dc.subject.keyword | 弦論,規範/重力對應, | zh_TW |
dc.subject.keyword | string theory,gauge/gravity correspondence, | en |
dc.relation.page | 102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-11-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
Appears in Collections: | 物理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 2.3 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.