請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪淑蕙(Shu-Huei Hung) | |
| dc.contributor.author | Chun-Wei Hsu | en |
| dc.contributor.author | 許峻瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:07:50Z | - |
| dc.date.available | 2011-08-23 | |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | Babuska, V., and M. Cara (1991), Seismic anisotropy in the earth, Kluwer Academic.
Behn, M. D., G. Hirth, et al. (2007). 'Trench-Parallel Anisotropy Produced by Foundering of Arc Lower Crust.' Science 317(5834): 108-111. Billen, M. I. (2008). 'Modeling the Dynamics of Subducting Slabs.' Annual Review of Earth and Planetary Sciences 36(1): 325-356. Bird, P. (2003). 'An updated digital model of plate boundaries.' Geochemistry Geophysics Geosystems 4(3). Browaeys, J. T. and S. Chevrot (2004). 'Decomposition of the elastic tensor and geophysical applications.' Geophysical Journal International 159(2): 667-678. C. Rangin, X. L. P., S. Mazzotti, M. Pubellier, N. Chamot-Rooke, and A. a. R. Q. M. Aurelio (1999). 'Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia.' Geophys. J. Int. 139: 296-316. Chevrot, S., N. Favier, et al. (2004). 'Shear wave splitting in three-dimensional anisotropic media.' Geophysical Journal International 159(2): 711-720. Cowin, S. C., and M. M. Mehrabadi (1987), On the Identification of Material Symmetry for Anisotropy Elastic Materials, Mechanics Appl Math, 40(4), 451-476. Crampin, S. and S. Peacock (2005). 'A review of shear-wave splitting in the compliant crack-critical anisotropic Earth.' Wave Motion 41(1): 59-77. Dolors Alsina , R. S. (1995). 'Small-scale sublithospheric continental mantle deformation : constraints from SKS splitting observations.' Geophys. J. Int. 123: 431-488. Donald L. Turcotte, and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge University Press. Faccenda, M., L. Burlini, et al. (2008). 'Fault-induced seismic anisotropy by hydration in subducting oceanic plates.' Nature 455(7216): 1097-1100. George Helffrich, D. A. W., Emilio Vera, Sergio Barrientos, Patrick Shore, Stacey Robertson and Rodrigo Adaros (2002). 'A teleseismic shear-wave splitting study to investigate mantle flow around South America and implications for plate-driving forces.' Geophys. J. Int. 149: F1-F7. Healy, D., S. M. Reddy, et al. (2009). 'Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs.' Earth and Planetary Science Letters 283(1-4): 75-86. Helbig, K. (1994), Fundations of anisotropy for Exploration seismics,Handbook of Geophysical Exploration,Vol. 22, Pergamon, London. Heuret, A. and S. Lallemand (2005). 'Plate motions, slab dynamics and back-arc deformation.' Physics of The Earth and Planetary Interiors 149(1-2): 31-51. Hiroki Kamata , K. K. (1994). 'Tectonics of an at the junction arc-arc junction: an example from Kyushu Island of the Southwest Japan Arc and the Ryukyu Arc.' Tectonophysic 233: 69-81. Hsu, S.-K. (2001). 'Lithospheric structure, buoyancy and coupling across the southernmost Ryukyu subduction zone: an example of decreasing plate coupling.' Earth and Planetary Science Letters 186: 471-478. Huang, B.-S., W.-G. Huang, et al. (2006). 'Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations.' Geophysical Research Letters 33(24). Hung, S.-H., and D. W. Forsyth (1998), Modelling anisotropic wave propagation in oceanic inhomogeneous structures using parallel multidomain pseudo-spectral method, Geophys. J. Int., 133, 726-740 Hyndman, R. D. and S. M. Peacock (2003). 'Serpentinization of the forearc mantle.' Earth and Planetary Science Letters 212(3-4): 417-432. Jung, H., and Karato S.-i. (2001). 'Water-Induced Fabric Transitions in Olivine.' Science 293: 1460-1462. Jin-Oh Park , H. T., Masanao Shinohara , Kiyoshi Suyehiro , Asahiko Taira (1998). 'Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system.' Tectonophysics 294: 21-42. Kaminski, E. (2006). 'Interpretation of seismic anisotropy in terms of mantle flow when melt is present.' Geophysical Research Letters 33(2). Kaminski, E. and N. M. Ribe (2001). 'A kinematic model for recrystallization and texture development in olivine polycrystals.' Earth and Planetary Science Letters 198: 253-267. Kaminski, E. and N. M. Ribe (2001). 'Timescales for the evolution of seismic anisotropy in mantle flow.' GeochemistryGeophysicsGeosystems 3. Kaminski, E., N. M. Ribe, et al. (2004). 'D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle.' Geophysical Journal International 158(2): 744-752. Karato, S.-i., and P. Wu (1993), Rheology of upper mantle: Synthesis, Science, 260, 771. Katayama, I., K.-i. Hirauchi, et al. (2009). 'Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge.' Nature 461(7267): 1114-1117. Kneller, E. A., M. D. Long, et al. (2008). 'Olivine fabric transitions and shear wave anisotropy in the Ryukyu subduction system.' Earth and Planetary Science Letters 268(3-4): 268-282. Kneller, E. A., P. E. van Keken, et al. (2005). 'B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models.' Earth and Planetary Science Letters 237(3-4): 781-797. Krinner, G., J. Mangerud, et al. (2004). 'Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.' Nature 427(6973): 429-432. Kuo-Chen, H., F. T. Wu, et al. (2009). 'SKS/SKKS splitting and Taiwan orogeny.' Geophysical Research Letters 36(12). Lassak, T. M., M. J. Fouch, et al. (2006). 'Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge?' Earth and Planetary Science Letters 243(3-4): 632-649. Lev, E., M. Long, et al. (2006). 'Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation.' Earth and Planetary Science Letters 251(3-4): 293-304. Levin, V., D. Okaya, et al. (2007). 'Shear wave birefringence in wedge-shaped anisotropic regions.' Geophysical Journal International 168(1): 275-286. Long, M. and R. Vanderhilst (2005). 'Upper mantle anisotropy beneath Japan from shear wave splitting.' Physics of The Earth and Planetary Interiors 151(3-4): 206-222. Long, M. and R. Vanderhilst (2006). 'Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge.' Physics of The Earth and Planetary Interiors 155(3-4): 300-312. Long, M. D., B. H. Hager, et al. (2007). 'Two-dimensional modelling of subduction zone anisotropy with application to southwestern Japan.' Geophysical Journal International 170(2): 839-856. Long, M. D. and P. G. Silver (2008). 'The Subduction Zone Flow Field from Seismic Anisotropy: A Global View.' Science 319(5861): 315-318. Mehl, L. (2003). 'Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska.' Journal of Geophysical Research 108(B8). Mineo Kumazawa , O. L. A. (1969). 'Elastic Moduli, Pressure Derivatives, and Temperature Derivatives of Single-Crystal Olivine and Single-Crystal Forsteritc.' JOURNAL of GEOPHYSICAL RESEARCH 74(25). Montagner, J.-P., and T.-i. Tanimoto (1991), 'Global Upper Mantle Tomography of Seismic Velocities and Anisotropies', Journal of Geophysical Research, 96(B12), 20337-20351. Nakajima, J., Hasegawa, A. (2004). 'Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan.' Earth and Planetary Science Letters 225(3-4): 365-377. Nippress, S. E. J., N. J. Kusznir, et al. (2007). 'LPO predicted seismic anisotropy beneath a simple model of a mid-ocean ridge.' Geophysical Research Letters 34(14). Park, J. and V. Levin (2002). 'Seismic Anisotropy: Tracing Plate Dynamics in the Mantle.' Science 296(5567): 485-489. Poli, S. and M. W. Schmidt (2002). 'Petrology Ofsubductedslabs.' Annual Review of Earth and Planetary Sciences 30(1): 207-235. R. M. Russo , P. G. S. (1994). 'Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy.' Science 263(25): 1105-1111. Ramsey, L. A., R. T. Walker, et al. (2007). 'Geomorphic constraints on the active tectonics of southern Taiwan.' Geophysical Journal International 170(3): 1357-1372. Rau, R.-J., Wen-Tzong Liang , Honn Kao , Bor-Shouh Huang (2000). 'Shear wave anisotropy beneath the Taiwan orogen.' Earth and Planetary Science Letters 177: 177-192. Rau Ruey-Juin , F. T. W. (1995). 'Tomographic imaging of lithospheric structures under Taiwan.' Earth and Planetary Science Letters 133: 517-532. Ribe, N. M. (1989), Seismic anisotropy and mantle flow, Journal of Geophysical Research, 94(B4), 4213-4223. S. Dominguez, S. L., J. Malavieille & P. Schnurle (1998). 'Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments.' Marine Geophysical Researches 20: 383-402. Savage, M. K. (1999), SEISMIC ANISOTROPY AND MANTLE DEFORMATION: WHAT HAVE WE LEARNED FROM SHEAR WAVE SPLITTING?, Reviews of Geophysics, 37, 65-106. Schellart,W. P., J. Freeman, et al. (2007). 'Evolution and diversity of subduction zones controlled by slab width.' Nature 446(7133): 308-311. Schellart,W. P., Lister, G.S., Jessell, M., (2002). Analogue modelling of asymmetricalback-arc extension. J. Virt. Expl. 7, 25–42 Sdrolias, M. and R. D. Muller (2006). 'Controls on back-arc basin formation.' Geochemistry Geophysics Geosystems 7(4). Shinjo, R. (1999). 'Geochemistry of high Mg andesites and the tectonic evolution ofthe Okinawa Trough–Ryukyu arc system.' Chemical Geology 157: 69-88. Shu-Kun Hsu , J.-C. S., Chuen-Tien Shyu (2001). 'Manetic inversion in the East China Sea and Okinawa Trough: tectonic implications.' Tectonophysics 333: 111-122. Shuqing Zhang , s.-i. K. (1995). 'Lattice preferred orientation of olivine aggregates deformed in simple shear.' Nature 375(29): 774-777. Silver, P. G. (1996). 'SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology.' Annu. Rev. Earth Planet. Sci. 24: 385-432. Smith, G. P. (2001). 'A Complex Pattern of Mantle Flow in the Lau Backarc.' Science 292(5517): 713-716. Sol, S., A. Meltzer, et al. (2007). 'Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy.' Geology 35(6): 563. Syracuse, E. M. and G. A. Abers (2006). 'Global compilation of variations in slab depth beneath arc volcanoes and implications.' Geochemistry Geophysics Geosystems 7(5). Taira, A. (2001). 'TECTONIC EVOLUTION OF THE JAPANESE ISLAND ARC SYSTEM.' Annu. Rev. Earth Planet. Sci. 29: 109-143. Tasaka, M., K. Michibayashi, et al. (2008). 'B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab.' Earth and Planetary Science Letters 272(3-4): 747-757. Thomsen, L. (1986). 'Weak elastic anisotropy.' GEOPHYSICS 51: 1954-1966. Walid Ben Ismaı‥l, D. M. (1998). 'An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy.' Tectonophysics 26: 145-157. Zheng, Y., T. Lay, et al. (2007). 'Pervasive Seismic Wave Reflectivity and Metasomatism of the Tonga Mantle Wedge.' Science 316(5826): 855-859. 柯彥廷(2010), 沖繩海槽與北台灣的地幔楔衰減特性及其與歐亞岩石圈之關係, 碩士論文, 國立台灣大學地質科學研究所 徐毅振(2006), 台灣北部上地幔非均向性之探討, 碩士論文, 國立台灣大學海洋研究所 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48675 | - |
| dc.description.abstract | 琉球隱沒帶西南端接近台灣東北部區域,為菲律賓海板塊斜向碰撞並隱沒至歐亞大陸板塊的聚合邊界。過去研究台灣本島底下震波非均向性性質皆顯示快波極化方向大致與臺灣造山帶走向平行,呈近南-北向,主要與岩石圈的變形有關。關於臺灣-琉球隱沒帶的非均向性特性和隱沒帶周圍地幔流場機制,因受限於測站分布,相關的研究較少。
本論文使用台灣島北部和最接近臺灣的兩個琉球群島寬頻測站所記錄的震波資料,分析剪力波分離參數,即S快波極化方向( )與快慢波分離的時間差( )。觀測結果顯示,琉球群島上的兩個測站IGK和YNG剪力波分離,其快波極化波方向大致與琉球海溝的方向平行;台灣北部彭佳嶼島的PCYB站結果則垂直琉球海溝;在台灣島東北部測站TWBB與TIPB的快S波極化方向由東西向轉為南北向。¬另外遠震S與SKS波分離的延遲時間約為1.5至2秒,而近震S波約為0.2至1秒,且與波線路徑呈正比關係,推測其震波非均向性範圍至少延伸至三百公里深處。 典型的地幔楔流場是由隱沒板塊向下拖曳引起垂直海溝的地幔對流模式,可由簡單的二維角隅流場來描述。因為地幔的主要組成礦物A-型態橄欖石晶體的快軸(a-軸)傾向平行剪切力即流場方向排列,與觀測剪力波分離所得到平行海溝方向抵觸。但近年來礦物變形實驗發現在含水量高、應力大的弧前環境,橄欖石主要以B型態的形式存在,即b-軸為快軸,所以a-軸(慢軸)平行流場方向則造成b-軸(快軸)平行海溝走向,與觀測結果符合。 為了測試弧前區域的B型態橄欖石對所觀測的平行海溝的非均向性有多大的影響,透過簡化的二維地幔楔流場運動模型,計算礦物因剪切應力變形呈晶格優選排列型式和以及對應的非均向震波速度構造,然後藉由數值模擬剪力波在該速度介質中傳遞產生的合成波,比較合成與實際記錄波形所量測的分離參數異同,進而了解隱沒板塊的地幔流場與弧前區域非均向性的關係。 結果顯示,不管是隱沒板塊近震或遠震S波的模擬結果,快方向在模型設置B型態橄欖石存在的弧前區域,均為平行海溝的方向。但是遠震SKS波的模擬結果,其快方向在弧前區域為垂直海溝方向的結果,意味著隱沒板塊下方的地幔A型態橄欖石優選排列的非均向性性質主導著SKS波的分離。另外我們也測試了隱沒板塊與地幔楔蛇紋岩化非均向性構造對剪力波分離的影響,結果與B型態橄欖石模擬結果相似。因此,在臺灣-琉球隱沒板塊邊緣地帶,可能存在於隱沒板塊下方沿海溝走向平行的側向流場以及從邊緣回流至地幔楔的三維流場,才足以解釋觀察到的震波非均向性結果。 | zh_TW |
| dc.description.abstract | The southern Ryukyu trench off northeast Taiwan marks the plate boundary where the Philippine Sea plate obliquely subducts beneath the Eurasian plate. The Ryukyu trench is oriented in a NE-SW direction to the east of 124oE and bends more E-W oriented to the west. To illuminate the nature of the mantle wedge flow around the edge of the Ryukyu subducting slab, we map the strength and geometry of upper mantle seismic anisotropy constrained by shear wave splitting analysis of local S waves and teleseismic SKS and S waves recorded at two stations IGK and YNG closest to Taiwan operated by the Japan F-net seismic network.
Our results indicate that the fast directions of both local and teleseismic shear waves observed at the two stations are approximately parallel to the local strike of the Ryukyu trench. Fast directions observed at station PCYB located in the Okinawa trough to the north of Taiwan show more trench-perpendicular. The fast directions observed at stations TWBB and TIPB in the northeast corner of Taiwan exhibit the transition from east-west to north-south directions. The split time delays of the teleseismic SKS and S waves are about 1.5-2 s, while those of the local S waves increase with the propagation path lengths ranging from 0.2 to 1 s, suggesting that seismic anisotropy at least extend down to 300 km depth. A 2D corner flow induced by the drag of a downgoing slab represents the classical view of the mantle flow at SZs. The lattice preferential orientation (LPO) of the fast a-axis of olivine is known to be parallel to the flow direction, that is, trench normal for the corner flow geometry, which is contradictory to the observed trench-parallel fast directions. Recent laboratory experiments on olivine aggregates suggest that under the condition of higher stress and higher water content that may exist in the fore arc region, the B-type fabric becomes dominant with the faster b-axis aligned parallel to the trench. To test whether the B-type texture in the fore-arc region can be sampled by finite-frequency local and teleseismic shear waves resulting in the observed trench-parallel anisotropy, we conduct full wave propagation modeling through the upper mantle structure in the framework of a 2D corner flow field using the numerical pseudospectral method. The adopted seismic velocity structure is based on LPO of olivine and pyroxene aggregates and the corresponding anisotropic elastic structure calculated from the plastic deformation model. The predicted fast directions from synthetic split SKS waves recorded above both the mantle wedge and subslab mantle are parallel to the flow direction, implying that the trench-normal anisotropy induced by the A-type fabric in the back arc and subslab mantle predominantly contribute to the observed SKS splitting. We also test the model with serpentinization in hydrated mantle wedge and subducted slab. The resulting pattern of shear wave splitting is similar to that from B-type fabric. Therefore, the alternative model like complex 3D geometry of the mantle wedge flow around the slab edge may need to explain the observed seismic anisotropy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:07:50Z (GMT). No. of bitstreams: 1 ntu-100-R96224117-1.pdf: 6339601 bytes, checksum: ece865903a5f8d98c779e89cea09e520 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 圖目錄 vii 第一章 緒論 1 1.1隱沒系統的地幔流場和地體構造 1 1.2隱沒帶彈性非均向彈性性質來源 2 1.3 剪力波分離 5 1.4 全球隱沒帶剪力波分離的特性和可能成因 8 1.5 硫球-臺灣碰撞隱沒帶地體架構與相關的非均向性構造研究 10 第二章 研究區域及資料選擇 14 2.1研究區域 14 2.2資料選取 16 第三章 原理與研究方法 18 3.1剪力波分離的量測方法 18 3.2地幔流場的計算-二維角隅流場模型 20 3.3礦物結晶體優選排列的計算 23 3.4橄欖石的不同型態 29 3.5數值模擬地震波 31 第四章 結果分析 33 4.1剪力波分離的觀測結果 33 4.2非均向性的分布 36 4.2.1 琉球隱沒帶地震的S波分離 36 4.2.2 遠震S、SKS波分離 45 4.2.3慢波延遲時間與波線路徑長度的關係 46 4.3數值模擬剪力波分離結果 47 4.3.1 點震源模擬結果 49 4.3.2 平面波模擬結果 51 第五章 討論 56 5.1 琉球海溝南端與台灣島底下的非均向性構造 56 5.1.1 橄欖石型態與非向性的關係 56 5.1.2 造山帶與非均向性的關係 58 5.1.3 地幔流場與非均向性的關係 61 5.2 模擬二維角隅流場與非均向性結果討論 61 5.2.1 點震源結果討論 61 5.2.2平面波震源結果討論 62 第六章 結論 64 參考文獻 65 附錄 70 琉球隱沒帶地震S波分離參數測量結果 70 遠震S、SKS波分離參數測量及結果 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | B型態橄欖石 | zh_TW |
| dc.subject | 震波非均向性 | zh_TW |
| dc.subject | 剪力波分離 | zh_TW |
| dc.subject | 晶軸優選排列 | zh_TW |
| dc.subject | 地幔流場 | zh_TW |
| dc.subject | SeismicAnisotropy | en |
| dc.subject | B-type olivine | en |
| dc.subject | Mantle flow | en |
| dc.subject | LPO | en |
| dc.subject | Shear wave splitting | en |
| dc.title | 琉球隱沒帶西南端的剪力波非均向性及對地幔流場特性的意涵 | zh_TW |
| dc.title | Shear Wave Anisotropy and Implications for
Mantle Flowat the Southwestern End of the Ryukyu Subduction Zone | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 龔源成(Yuan-Cheng Gung),喬凌雲(Ling-Yun Chiao),郭本垣(Ban-Yuan Kuo),梁文宗(Wen-Tzong Liang) | |
| dc.subject.keyword | 震波非均向性,剪力波分離,晶軸優選排列,地幔流場,B型態橄欖石, | zh_TW |
| dc.subject.keyword | SeismicAnisotropy,Shear wave splitting,LPO,Mantle flow,B-type olivine, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
